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1

Differential Calculus

1.1. limits

Let x = 1 − 1
n
, where n is a positive integer. Then 0 < x < 1 for all values of n. For

example, if n = 2, then

x = 1− 1
2

= 1
2
.

If n = 4, then

x = 1− 1
4

= 3
4
.

If n = 8 then

x = 1− 1
8

= 7
8
.

and so on.

Note that as n increases the fraction 1
n

decreases which results in the difference 1− 1
n

to

increase. Thus, as n increases, the values of x also increases but will not exceed 1 but will

get closer and closer to the value 1.

0 1
2

3
4
7
8
1

We say that x approaches 1 from the left and write x→ 1−

Similarly, if x = 1 + 1
n

where n is a positive integer, then 1 < x < 2 for all values of n.

However, as n increases, the fraction 1
n

becomes smaller, this means that we are adding
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a smaller number to 1. As a result, the values of x = 1 + 1
n

decreases to 1. For example,

when n = 2

x = 1 + 1
2

= 3
2
.

If n = 4, then

x = 1 + 1
4

= 5
4
.

If n = 8, then

x = 1 + 1
8

= 9
8
,

and so on.
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2
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1 2

We say that x approaches 1 from the right and write x→ 1+.

Let a be a real number. When we say ’as x approaches a’ and write x → a, we include

both situations, that is, x approaches a from the left and from the right.

Let y = f(x) be a function. We shall now investigate the behaviour of the function as x

approaches a real number a.

Example 1.1.0.1 Consider the function

f(x) = x2,

. We investigate its behaviour as x approaches 2 from the left and from the right.

Let first x approach 2 from the left.

As we approach 2 from the negative(left), we obtain the following:

x 1.8 1.9 1.99 1.999 1.9999

y = x2 3.24 3.61 3.9601 3.996001 3.99960001
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From the table above, we observe that as x approaches 2 from the left, the values of the

function f(x) = x2 approach the value 4. Thus, we say that the limit of the function

y = f(x) as x approaches 2 from the left is 4, and write it as

lim
x→2−

f(x) = lim
x→2−

x2 = 4

Suppose that now we approach 2 from the right.

If we now approach 2 from the positive (right), we obtain the following:

x 2.2 2.1 2.01 2.001 2.0001

y = x2 4.84 4.41 4.0401 4.004001 4.00040001

From the table above, we observe that as x approaches 2 from the right, the values of the

function f(x) = x2 approach the value 4. Thus, we say that the limit of the function as x

approaches 2 from the right is 4, and write it as

lim
x→2+

f(x) = lim
x→2+

x2 = 4

In this example we observe that the limit of the function f(x) = x2 as x approaches 2

from the left is the same as its limit as x approach 2 from the right. That is,

lim
x→2−

x2 = 4 = lim
x→2+

x2 = f(2) = (2)2 = 4.

In this case, we say that the limit of the function f(x) = x2 at the point x = 2 exists and

that limit is 4. That is

lim
x→2

f(x) = lim
x→2

x2 = 4

Definition 1.1.1 Let a and L be real numbers. We say that the limit of the function

f(x) as x approaches a exists and the limit is L written as

lim
x→a

f(x) = L

if the limit from the left of the function is L and the limit from the right of the function

is also L. That is, if

lim
x→a−

f(x) = L = lim
x→a+

f(x)
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If either

lim
x→a−

f(x) 6= lim
x→a+

f(x)

or

lim
x→a

f(x) =∞,

then we say that the limit of the function f(x) does not exist at x = a.

For any polynomial function

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

the limit of such function exist at any real number x = a and this limit is given by f(a).

For example, for the function f(x) = x2, we have seen already that the limit of this

function at x = 2 exists and this limit is f(2) = (2)2 = 4.

Most of the rational functions

f(x) =
ax+ b

cx+ d
also behave like polynomial functions at any real number where the denominator is not

zero. That is, if p is a real number and c(p) + d 6= 0, then lim
x→p

f(x) exists and

lim
x→p

f(x) = f(p) =
a(p) + b

c(p) + d
.

Example 1.1.0.2 Evaluate the following limits

(i) lim
x→2

3x3 + 5x− 13

(ii) lim
x→1

x2 − 2x+ 7

x+ 2

Solution:

(i) f(x) = 3x3 + 5x − 13 is a polynomial function, therefore, its limit at x = 2 is just

f(2). Thus

limx→2(3x
3 + 5x− 13) = 3(2)3 + 5(2)− 13

= 3(8) + 10− 13

= 24 + 10− 13

= 21
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(ii) The function f(x) = x2−2x+7
x+2

is a rational function in which the denominator is x+2.

Substituting x = 1 into the denominator gives 1+2 = 3 6= 0. Since the denominator

is non zero at x = 1, then the limit of this function at 1 is f(1). Thus,

lim
x→1

(
x2 − 2x+ 7

x+ 2
) = 12−2(1)+7

1+2

= 1−2+7
3

= 2.

If f(x) = h(x)
g(x)

is a rational function and a is a real number such that g(a) = 0 and

h(a) 6= 0, then

lim
x→a

f(x) =∞ (undefined).

Remember we have already mentioned that if the limit is infinity, then the limit does not

exist.

Some points to note:

1. In general we do not evaluate the limit by actually substituting x = a in f(x) for a

number of reasons. For example, the limit of the function may exist at x = a and

yet f(a) may not be defined or may give a different value altogether.

2. The value of the limit can depend on which side it is approached, from left or right,

i.e through the values of x less than a or through the values of x greater than a

respectively. The two possible values may not be the same in which case the limit

does not exist.

3. The limit may not exist at all and even if it does it may not be equal to f(a).

Example 1.1.0.3 (a) Let the function

f(x) :=

x2 − 1 if x ≤ 4

x− 2 if x > 4
,

check whether the limit as x approaches 4 exist?

(b) Let the function

f(x) :=

x2 + 1 if x 6= 2

−4 if x = 2
,

(i) Find f(2)
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(ii) Find limit as lim
x→2

f(x)

Solution:

(a) For the function

f(x) :=

x2 − 1 if x ≤ 4

x− 2 if x > 4
,

note that it is divided into two parts. For all values of x which are less than or

equal to 4 the function is f(x) = x2 − 1 while for all values of x greater than 4 the

function is f(x) = x− 2. Therefore, we have

lim
x→4−

f(x) = lim
x→4−

(x2 − 1)

= (4)2 − 1

= 16− 1

= 15

Thus, lim
x→4−

f(x) = 15.

On the other hand

lim
x→4+

f(x) = lim
x→4+

(x− 2)

= 4− 2

= 2

Thus, lim
x→4+

f(x) = 2

Since 15 = lim
x→4−

f(x) 6= lim
x→4+

f(x) = 2, then the limit of the function at x = 4 does

not exist.

(b) For the function

f(x) :=

x2 + 1 if x 6= 2

−4 if x = 2
,

we have

(i) f(2) = −4

(ii) lim
x→2−

f(x) = lim
x→2−

(x2 + 1) = (2)2 + 1 = 5 = lim
x→2+

f(x). Therefore, lim
x→2

f(x) = 5.
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Limits of the form 0
0

Let f(x) = h(x)
g(x)

be a rational function. Let a be a real number such that h(a) = 0 and

g(a) = 0. In this case, if you try to evaluate the limit of the function f by directly

substituting x = a, you end up having the following expresion

lim
x→a

f(x) =
h(a)

g(a)
=

0

0
.

This expression is meaningless. When this happens, it means that there is a common

factor for h(x) and g(x). You need to find the common factor, cancel it out before

making your substitution. For example, consider the limit

lim
x→1

x2 + x− 2

x− 1
.

Direct substitution by x = 1 yields the expression 0
0
. However, to find the correct limit

we first factorize the numerator as follows

lim
x→1

x2 + x− 2

x− 1
= lim

x→1

(x− 1)(x+ 2)

x− 1
= lim

x→1
(x+ 2), after cancelling the common factor (x-1)

= 1 + 2

= 3

Thus, lim
x→1

x2 + x− 2

x− 1
= 3.

Example 1.1.0.4 Evaluate each of the following limits.

(a) lim
x→0

3x

x2 + 2x

(b) lim
x→−2

x2 + 5x+ 6

x2 + x− 2

(c) lim
x→2

4− x2

3−
√
x2 + 5

Solution:
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(a) We have

lim
x→0

3x

x2 + 2x
= lim

x→0

3x

x(x+ 2)

= lim
x→0

3

x+ 2
= 3

0+2

= 3
2

(b)

lim
x→−2

x2 + 5x+ 6

x2 + x− 2
= lim

x→−2

(x+ 2)(x+ 3)

(x+ 2)(x− 1)

= lim
x→−2

x+ 3

x− 1
= −2+3

−2−1

= −1
3

(c) We first rationalize the denominator

lim
x→2

4− x2

3−
√
x2 + 5

= lim
x→2

(4− x2)(3 +
√
x2 + 5)

(3−
√
x2 + 5)(3 +

√
x2 + 5)

= lim
x→2

(4− x2)(3 +
√
x2 + 5)

9− (x2 + 5)

= lim
x→2

(4− x2)(3 +
√
x2 + 5)

9− x2 − 5

= lim
x→2

(4− x2)(3 +
√
x2 + 5)

4− x2
= lim

x→2
(3 +

√
x2 + 5)

= 3 +
√

(2)2 + 5

= 3 +
√

9

= 6

Properties of limits

The properties of limits are fairly well what we might expect. Thus if limx→a f(x) = b

and limx→a g(x) = c, then

1. limx→a kf(x) = k limx→a f(x) = kb for any constant k

2. limx→a(f(x)± g(x)) = limx→a f(x)± limx→a g(x) = b± c

3. limx→a(f(x)g(x)) = limx→a f(x) limx→a g(x) = bc

4. limx→a(
f(x)
g(x)

) = limx→a f(x)
limx→a g(x)

= b
c
, c 6= 0.

5. limx→a(f(x))n = (limx→a f(x))n = bn.
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Note

From the definition of limits, we observe the following:

1.

lim
x→∞

1

x
= 0

2.

lim
x→0

1

x
=∞.

3.

lim
x→0

x = 0.

4.

lim
x→∞

x =∞.

Limits of the form ∞
∞

Consider the function f(x) = 7x2−x
3x2+5

. If we try to take the limit of the function as x goes

to infinity we get the following expression

lim
x→∞

7x2 − x
3x2 + 5

=
∞
∞

and this again is a meaningless expression. To deal with such limits, first divide both the

numerator and the denominator by the highest power of x in the quotient before taking

the limit. For example, in the function above we do the following

lim
x→∞

f(x) = lim
x→∞

x2(7− 1
x
)

x2(3 + 5
x2

)

= lim
x→∞

7− 1
x

3 + 5
x2

after cancelling x2

=
lim
x→∞

(7− 1

x
)

lim
x→∞

(3 +
5

x2
)

= 7−0
3+0

by the properties of limits above

= 7
3
.

Example 1.1.0.5 1.

lim
x→∞

2x

1 + 3x
= lim

x→∞

2
1
x

+ 3
=

2

3
.
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2.

lim
x→∞

5− 2x− 9x2

2x2 + 3
= lim

x→∞

5
x2
− 2

x
− 9

2 + 3
x2

= −9

2
.

3.

lim
x→∞

2x

x3 + 2x2 − 1
= lim

x→∞

2
x2

1 + 2
x
− 1

x3

= 0.

Other standard limits are given as follows:

(a) lim
x→0

sinx

x
= 1

(b) lim
x→0

1− cosx

x
= 0.

Example 1.1.0.6 Evaluate each of the following limits.

(a) lim
x→0

tanx

x

(b) lim
x→0

sin 3x

x
.

Solution:

(a)

lim
x→0

tanx

x
= lim

x→0

sinx

x cosx

= lim
x→0

sinx

x
lim
x→0

1

cosx
= 1× 1

= 1.

(b)

lim
x→0

sin 3x

x
= lim

x→0

3 sin 3x

3x

= 3 lim
x→0

sin 3x

3x
= 3× 1

= 3.
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1.2. Continuity

Definition 1.2.1 A function f(x) is said to be continuous at x = a if and only if the

following are satisfied

1. f(a) is defined

2. limx→a f(x) exist

3. limx→a f(x) = f(a)

Example 1.2.0.7 Investigate the continuity of each of the following:

(a)

f(x) =
x2 − 1

x+ 1
at x = −1

(b)

f(x) :=

 2x+ 1 if x ≤ −1

x2 − 2 if x > −1
, at x = −1

Solution:

(a) We have

lim
x→−1

f(x) = lim
x→−1

x2 − 1

x+ 1

= lim
x→−1

(x− 1)(x+ 1)

x+ 1
= lim

x→−1
(x− 1) after cancelling common factor

= −1− 1 = −2.

However, f(−1) is undefined. Therefore, since f(−1) 6= lim
x→−1

f(x) we conclude that

the function is not continuous at x = −1.

(b) Note that this function is divided into two parts. For all values of x less or equal to

−1, the function is f(x) = 2x+ 1. Therefore, to find the left limit we use this linear

part of the function. Thus

lim
x→−1−

f(x) = lim
x→−1−

(2x+ 1) = 2(−1) + 1 = −2 + 1 = −1
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For all values of x greater that −1, the function is f(x) = x2− 2. Therefore, to find

the left limit we use this quadratic part. Thus

lim
x→−1+

f(x) = lim
x→−1+

(x2 − 2) = (−1)2 − 2 = 1− 2 = −1

Since the left limit is the same as the right limit, we have lim
x→−1

f(x) = −1. On the

other hand, f(−1) = 2(−1) + 1 = −1. Since f(−1) = −1 = lim
x→−1

f(x), we conclude

that the function is continuous at x = −1.

Example 1.2.0.8 If the function

f(x) :=

 x2−16
x−4 if x 6= 4

C if x = 4

is continuous at x = 4, what is the value of C.

Solution:

We have lim
x→4

f(x) = lim
x→4

x2 − 16

x− 4
= lim

x→4
(x+ 4) = 8.

If f(x) is continuous at x = 4 then C = f(4) = lim
x→4

f(x) = 8. Thus, C = 8.

Example 1.2.0.9 Sketch the graph of

f(x) :=

 2x+ 1 if x ≤ −1

x2 − 2 if x > −1
.

Solution: We have already discussed the continuity of this function at the point x = −1.

The graph of this function is given below:
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x

y

−1

y = f(x)

1.3. Differentiation

1.3.1 Derivative

Definition 1.3.1 Let y = f(x) be a continuous function on a given interval and let x be

a number in its domain. Then we define the derivative of f at x to be the function f ′(x)

given by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (1.1)

provided this limit exists.

Note that this limit is of the form 0
0

if you substitute h = 0 directly.

Other notations for the derivative of the function y = f(x) are dy
dx

, df
dx

or y′.
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Differentiating a function y = f(x) by taking the limit of the quotient f(x+h)−f(x)
h

as h

approaches 0 is called differentiating the function from the first principle.

Definition 1.3.2 Given a function y = f(x), the first principle states that the gradient

function of f(x) denoted by f ′(x) is given by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Example 1.3.1.1 Use the first principle to find f ′(x) in each of the following:

(a) f(x) = x2

(b) y = 1
x

(c) y = sinx

Solution: Using the formula f ′(x) = lim
h→0

f(x+ h)− f(x)

h
we have

(a)

f ′(x) = lim
h→0

(x+ h)2 − x2

h

= lim
h→0

x2 + 2xh+ h2 − x2

h

= lim
h→0

2xh+ h2

h

= lim
h→0

(2x+ h)h

h
= lim

h→0
(2x+ h)

= 2x.

(b) Since y = f(x) we have

y′ = f ′(x) = lim
h→0

1
x+h
− 1

x

h

= lim
h→0

x− (x+ h)

hx(x+ h)

= lim
h→0

−h
hx(x+ h)

= − lim
h→0

1

x(x+ h)

= − 1
x2
.
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(c)

y′ = f ′(x) = lim
h→0

sinx+ h− sinx

h

= lim
h→0

sinx cosh+ sinh cosx− sinx

h

= lim
h→0

sinx cosh− sinx+ sinh cosx

h

= lim
h→0

sinx(cosh− 1) + sinh cosx

h

= sin x lim
h→0

cosh− 1

h
+ cosx lim

h→0

sinh

h
= 0 + cosx

= cos x

Thus, the derivative of sin x is cos x.

Example 1.3.1.2 Differentiate each of the following functions from the first principle

(a) f(x) =
√
x

(b) y = 1√
x

Solution: Again we use the formula f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, we have

(a)

f ′(x) = lim
h→0

√
x+ h−

√
x

h

= lim
h→0

(
√
x+ h−

√
x)(
√
x+ h+

√
x)

h(
√
x+ h+

√
x)

rationalizing the numerator

= lim
h→0

x+ h− x
h(
√
x+ h+

√
x

= lim
h→0

h

h(
√
x+ h+

√
x)

= lim
h→0

1√
x+ h+

√
x

= 1
2(
√
x)
.

(b) Do it as an exercise.
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By the other notations stated above, if y = f(x), then we can also write the derivative as

dy

dx
= f ′(x)

Note that if f(x) = c a constant function, then f(x+ h) = c so that f(x+ h)− f(x) = 0.

This says that the derivative of the constant function is zero.

We now want to outline general rules for differentiating complex functions. First we give

standard derivatives of elementary functions.

Here are some of the standard derivatives:

1. If y = xn for any real number n, then dy
dx

= nxn−1

2. If y = sinx, then dy
dx

= cosx

3. If y = cosx, then dy
dx

= − sinx

4. If y = ex, then dy
dx

= ex

5. If y = lnx, then dy
dx

= 1
x

Let f(x) and g(x) be two functions, and let C be any real number, then

1. y = Cf(x) implies that dy
dx

= Cf ′(x)

2. y = f(x) + g(x) implies that dy
dx

= df(x)
dx

+ dg(x)
dx

= f ′(x) + g′(x)

3. y = f(x)− g(x) implies that dy
dx

= f ′(x)− g′(x)

Example 1.3.1.3 Find the derivative of each of the following functions:

(a) y = x3 − 6x+ 5
x2

+ 17

(b) f(x) = 3 sinx− 5 ln (x+ 1)

(c) g(x) = x−7 + 2ex − 5

Solution:

(a) For y = x3 − 6x+ 5
x2

+ 17, we differentiate term by term as follows
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(i) f(x) = x3 ⇒ f ′(x) = 3x2

(ii) g(x) = −6x⇒ g′(x) = −6

(iii) h(x) = 5
x2

= 5x−2 ⇒ h′(x) = −10x−3 = − 10
x3

(iv) k(x) = 17⇒ k′(x) = 0

Combining (i), (ii), (iii) and (iv) we have

dy

dx
= 3x2 − 6− 10

x3

(b) We again differentiate f(x) = 3 sinx− 5 ln (x+ 1) term by term to get

f ′x = 3 cos x− 5

x+ 1

(c) Differentiate g(x) = x−7 + 2ex − 5 term by term to get

g′(x) = −7x−8 + 2ex

Interpretation of the derivative

One interpretation of the derivative of a function is that the derivative of a function gives

the gradient (slope) of a function at any given point. Note also that the gradient of a

function at any point is equal to the gradient of the tangent line to the graph of the

function at that given point.

Example 1.3.1.4 Find the gradient of the tangent to the graph of the function at a given

point in each of the following:

(a) y = x3 − 2x− 5 at (2,−1)

(b) f(x) = cos x+ 1
4

at (π
3
, 3
4
)

(c) f(x) = 1
x

at (1
2
, 2)

Solution:
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(a) Differentiating the function y = x3 − 2x− 5 we get

dy

dx
= 3x2 − 2

Since the derivative is a function of x only, we substitute x = 2 to get the gradient

of the tangent. Thus

m = 3(2)2 − 2 = 12− 2 = 10

(b) The derivative of f(x) = cos x+ 1
4

is

f ′(x) = − sinx

So the gradient of the tangent at (π
3
, 1
4
) is

m = − sin (
π

3
) = −

√
3

2

(c) We have

f ′(x) = − 1

x2

so that

m = − 1

(1
2
)2

= −4

is the gradient of the tangent.

1.4. Methods of differentiation

We now consider some methods of differentiation which will enable us differentiate some

complicated functions in which we can not apply above methods directly.

1.4.1 Chain Rule

The Chain Rule is a method of differentiating composition of functions. For example

f(x) = (x5 − 2x2 + 3)8. We can see that if we let g(x) = x5 − 2x2 + 3 and h(x) = x8, the

f(x) is the composition of functions f(x) = (h ◦ g)(x). To differentiate such functions we

use the following:
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Theorem 1.4.1 Let u = g(x) and y = f(u). Then y is a function of x and

dy

dx
=
dy

du

du

dx

Example 1.4.1.1 Use chain rule to differentiate each of the following functions:

(a) y = (3x+ 1)2

(b) y = ln (x2 − 3x)

(c) y = e−3x
2

(d) y = cos (4x3 + 2)

Solution:

(a) Let u = 3x+ 1, then y = u2. We have

dy
du

= 2u
du
dx

= 3

Now by the chain rule dy
dx

= dy
du

du
dx

we get

dy

dx
= 2u(3) = 6(3x+ 1) = 18x+ 6

(b) Let u = x2 − 3x. Then y = lnu. We have

dy
du

= 1
u

du
dx

= 2x− 3.

dy
dx

= dy
du

du
dx

= 1
u
× (2x− 3)

= 2x−3
x2−3x , since u = x2 − 3x.

(c) Let u = −3x2. Then y = eu. We have

dy
du

= eu

du
dx

= −6x

Then
dy
dx

= −6xe−3x
2
.
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(d) Exercise.

1.4.2 Product Rule

Theorem 1.4.2 Let u = f(x) and v = g(x) be two functions of x. Let y = uv =

f(x)g(x), then

dy

dx
= v

du

dx
+ u

dv

dx
= g(x)f ′(x) + f(x)g′(x)

Example 1.4.2.1 Use product rule to differentiate each of the following functions

(a) y = x5 lnx

(b) e2x sinx

Solution:

(a) Let u = x5 and v = lnx, then

du
dx

= 5x4

dv
dx

= 1
x
.

It follows that

dy
dx

= v du
dx

+ u dv
dx

= ln x(5x4) + x5( 1
x
)

= 5x4 lnx+ x4

= x4(5 lnx+ 1)

(b) Let u = e2x and v = sinx, then

du
dx

= 2e2x by chain rule
dv
dx

= cos x

It follows that
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dy
dx

= v du
dx

+ u dv
dx

= sin x(2e2x) + e2x cosx

= 2e2x sinx+ e2x cosx

= e2x(2 sinx+ cosx).

1.4.3 Quotient Rule

Theorem 1.4.3 Let u = f(x) and v = g(x) be two functions of x. If y = u
v

= f(x)
g(x)

, then

dy

dx
=
v du
dx
− u dv

dx

v2
=
g(x)f ′(x)− f(x)g′(x)

(g(x))2

Example 1.4.3.1 Find the derivative of each of the following functions

(a) y = x3−2x
x2+1

(b) y = tanx

Solution:

(a) Let u = x3 − 2x and v = x2 + 1. We have

du
dx

= 3x2 − 2
dv
dx

= 2x

Then

dy
dx

=
v du
dx
−u dv

dx

v2

= (x2+1)(3x2−2)−(x3−2x)(2x)
(x2+1)2

= 3x4−2x2+3x2−2−(2x4−4x2)
(x2+1)2

= x4+5x2−2
(x2+1)2

(b) Write y = tanx = sinx
cosx

and let u = sinx and v = cosx. Then

dy
dx

=
v du
dx
−u dv

dx

v2

= cosx(cosx)−sinx(− sinx)
cos2 x

= cos2 x+sin2 x
cos2 x

= cos2 x
cos2 x

+ sin2 x
cos2 x

= 1 + tan2 x
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Note also that cos2 x+sin2 x
cos2 x

= 1
cos2 x

= sec2 x. This gives the identity

sec2 x = 1 + tan2 x

1.4.4 Implicit Differentiation

Consider the equation y + xy + y2 = 2. We may sometimes be able to solve the equation

for y and express it as y = f(x), as a function of x. In such circumstances it would be easy

to find the derivative dy
dx

= f ′(x). Unfortunately it is not always possible to do so. In such

a situation, it may still be possible under certain conditions to work out the derivative
dy
dx

by implicit differentiation. To see how this can be done let us use again the equation

y + xy + y2 = 2. Write this equation as

f(x) + xf(x) + (f(x))2 = 2 (1.2)

where y = f(x) and dy
dx

= f ′(x)

Differentiating equation (1.2) term by term we get the following

(i) df(x)
dx

= f ′(x) = dy
dx

(ii) xf(x) is a product of functions and by product rule we have

d(xf(x))

dx
= (1)f(x) + xf ′(x) = y + x

dy

dx

That is,

d(xy)

dx
= y + x

dy

dx

(iii) To differentiate [f(x)]2 we use chain rule

d[f(x)]2

dx
= (2f(x))f ′(x) = 2y

dy

dx

That is,

d(y2

dx
= 2y

dy

dx
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(iv) d(2)
dx

= 0

Combining these we see that differentiating the equation y + xy + y2 = 2 with respect to

x gives

dy

dx
+ (y + x

dy

dx
+ 2y

dy

dx
= 0

or

(1 + x+ 2y)
dy

dx
+ y = 0 (1.3)

If we now solve equation (1.3) for dy
dx

we get

dy

dx
= − y

1 + x+ 2y

1.5. Some Applications of Differentiation

In this chapter, we present some applications of differentiation in our day to day life. These

include finding the slope or gradient of a curve at a given point,sketching curves,optimization

problems, i.e. problems of determining the maximum or minimum point of a function.

1.5.1 The Gradient

We recall that the gradient function of a curve y = f(x) at a point (a, b), denoted by

f ′(a), is given by

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

Example 1.5.1.1 Find the gradient of the curve

y =
1

4
x3 − 2x

at P (1,−7
4
) and hence write down the equation of the tangent to the curve at the point P.

Solution:

The derivative of the function is dy
dx

= 3
4
x2 − 2. Now the gradient of a curve at a point

is the derivative of the function evaluated at the given point. Thus, the gradient of the

curve at P is
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dy

dx
|x=1 =

3

4
(1)2 − 2 =

3

4
− 2 = −5

4

or

m = −5

4

This is also the gradient of the tangent to the curve at P . Now, the tangent to the curve

at a given point is a straight line and is of the form

y = mx+ c.

We already have that m = −5
4

so that the equation of the tangent has the form

y = −5

4
x+ c.

To find c we use the values of x and y at the point P . When x = 1 then y = −7
4
.

Substituting these values in the above equation and then solving for c we have

−7
4

= −5
4
(1) + c

c = −7
4

+ 5
4

= −1
2
.

The equation of the tangent then is

y = −5

4
x− 1

2
.

1.5.2 Increasing and Decreasing Functions

Let y = f(x) be a function continuous on a given interval and let x0 be a point in

the interval. The function y = f(x) is said to be increasing at x0 if for all x in the

neighborhood of x0 we have

f(x) < f(x0) for x < x0 and

f(x) > f(x0) for x > x0.
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The function y = f(x) is decreasing at x0 if for all x in some neighborhood of x0 we have

f(x) > f(x0) for x < x0 and

f(x) < f(x0) for x > x0.

Theorem 1.5.1 Let y = f(x) be a function defined in a neighborhood of a point x0.

(i) If dy
dx
|x0 = f ′(x0) > 0, then the function y = f(x) is increasing at x0.

(ii) If dy
dx
|x0 = f ′(x0) < 0, then the function y = f(x) is decreasing at x0.

Example 1.5.2.1 Let y = 2x3− 3x2− 12x be a function. Determine the intervals where

the function is increasing and where it is decreasing.

Solution:

We now know that the function is increasing in the interval where the derivative dy
dx

is

positive, and that it is decreasing in the interval where the derivative dy
dx

is negative.

Now the derivative of the function y = 2x3 − 3x2 − 12x is

dy

dx
= 6x2 − 6x− 12 = 6(x− 2)(x+ 1).

To get the intervals first we get the critical values of the derivative, that is, values of x

which make the derivative zero. The critical values of the above derivative are x = 2 and

x = −1

We now use the critical values to form intervals as follows

−1 2

So we have the following intervals

I1 = (−∞,−1)

I2 = (−1, 2)

I3 = (2,∞).

We now test the sign of the gradient of the function dy
dx

= 6(x − 2)(x + 1) in each of the

intervals I1, I2 and I3.
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Take any value in I1, say x = −3 as a test value. Then we have

dy

dx
|x=−3 = 6(−3− 2)(−3 + 1) = 60 > 0

Thus, the derivative is positive in the interval I1 = (−∞,−1) meaning that the gradient

of the function in this interval is positive. This is true for any value you take in this

interval. Therefore, the function is increasing in the interval I1

In the interval I2 we take any value, say x = 0 in this interval. Then we have

dy

dx
|x=0 = 6(0− 2)(0 + 1) = −12 < 0

Since the derivative of the function is negative at x = 0, then the gradient of the function

is negative there. This is true for any value of x in the interval (−1, 2). Therefore, the

function is decreasing in the interval I2.

We do the same to the interval I3 = (2,∞). Take any value say x = 3. Then

dy

dx
|x=3 = 6(3− 2)(3 + 1) = 24 > 0

Thus, the function is also increasing in the interval I3.

We conclude that the function y = 2x3 − 3x2 − 12x is increasing in the interval

(−∞,−1) ∪ (2,∞)

and it is decreasing in the interval

(−1, 2).

1.5.3 Critical or Stationary Points

We have used the gradient of the curve dy
dx

to determine where the function is increasing

( dy
dx
> 0) and to determine where the function is decreasing ( dy

dx
< 0). We now look at a

case where the gradient of the function is zero. That is, a case when dy
dx

= 0.

The points where dy
dx

= 0 are called critical points, and the corresponding values of x as

we have already seen, are called critical values.
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Example 1.5.3.1 Find all the critical points of the function

f(x) =
1

2
x4 − 1

3
x3 − 5

2
x2 − 2x+ 1.

Solution:

Differentiating the function gives

dy
dx

= 2x3 − x2 − 5x− 2. To find the critical values we solve the equation dy
dx

= 0, That is,

we solve the equation

2x3 − x2 − 5x− 2 = 0

By factor theorem we see that x + 1 is a factor of 2x3 − x2 − 5x− 2. We now use either

long division or synthetic division to find other factors. Factorising the left hand side of

the equation we get

(x+ 1)(x− 2)(2x+ 1) = 0

This gives the critical values to be x = −1,−1
2
, 2.

To find the critical points, we substitute each of the critical values into the function to

find the corresponding values of y. We have

f(−1) = 1
2

+ 1
3
− 5

2
+ 2 + 1 = 4

3

f(−1
2

= 1
32

+ 1
24
− 5

8
+ 1 + 1 = 137

96

f(2) = 8− 8
3
− 10− 4 + 1 = −23

3
.

Therefore, the critical points are (−1, 4
3
), (−1

2
, 137

96
) and (2,−23

3
).

Note that when dy
dx

= 0, the function is neither increasing nor decreasing. It is like the

function is stationary. Hence the term used to describe points where dy
dx

= 0 is stationary
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points.

x

y

B

D

The points such as B in the diagram where the function turns downward are called

maximum points.

The points such as D in the diagram where the function turns upward are called

minimum points.

The minimum and the maximum points of a function are also called the extreme points.

Note that the extreme points are also critical points.

To determine the extreme points of a function we have the following criteria.

Lemma 1.5.1 Let y = f(x) be a function and let p be a point in domain of f . Let the

derivative at p be zero. That is dy
dx
|x=p = f ′(p) = 0.

(i) If dy
dx

changes sign from positive when x < p to negative when x > p, then y = f(x)

has a maximum at x = p.

(ii) If dy
dx

changes sign from negative when x < p to positive when x > p, then y = f(x)

has a minimum at x = p.

(iii) If dy
dx

does not change sign as x increases, then y = f(x) neither has a maximum

nor a minimum.

There is however, a much practical way of determining the extreme points of a function

using the second derivative. If y = f(x) is a function, then the second derivative of the
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function is obtained by differentiating the derivative function. That if dy
dx

= f ′(x) is the

derivative of f , then the second derivative is d
dx

( dy
dx

) = d2y
dx2

= f ′′(x).

Example 1.5.3.2 Let y = 1
5
x5 + 1

12
x4 − x2 + 2 be a function. Find the second derivative

d2y
dx2

of the function.

Solution:

We have
dy

dx
= x4 +

1

3
x3 − 2x

Then, the second derivative is

d2y

dx2
= 4x3 + x2 − 2.

We now state the Second Derivative Test.

Lemma 1.5.2 Let y = f(x) be a function, and let p be a point in the domain of f such

that dy
dx
|x=p = f ′(p) = 0.

(i) If d2y
dx2

< 0 at p, then y = f(x) has a maximum there.

(ii) If d2y
dx2

> 0 at p, then y = f(x) has a minimum there.

(iii) If d2y
dx2

= 0 at p, then the test fails.

A point where d2y
dx2

= 0 is called a point of inflection.

1.5.4 Curve Sketching

To sketch the curve of a polynomial function we need to do the following:

1. Find the points where the curve crosses the axes. Remember that where the graph

crosses the x-axis the value of y is zero, and where the graph crosses the y-axis

x = 0.

2. Determine the behavior of the function y = f(x) for large values of x, that is as

x→∞ and as x→ −∞.
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3. Locate all the stationary points where dy
dx

= 0.

4. Determine the extreme points, that is, maximum and minimum points.

5. Locate all points of inflection, where d2y
dx2

= 0.

6. If necessary plot a few additional values.

Example 1.5.4.1 Sketch the graph of the function y = 1
3
x3 − 1

2
x2 − 2x+ 2

Solution:

1. When x = 0, y = 2. The points where the graph crosses the x-axis are irrational

and so cannot be easily found.

2. When the values of x become large, the function is dominated by the term x3.

Therefore, when x becomes large and negative, y also becomes large and negative.

When x becomes large and positive, y also becomes large and positive.

3. To find the stationary points we have dy
dx

= x2−x− 2. Setting the derivative to zero

and solving for x we have

x2 − x − 2 = 0 ⇒ (x + 1)(x − 2) = 0. This gives the critical values to be x = −1

and x = 2.

When x = −1 then y = 1
3
(−1)3 − 1

2
(−1)2 − 2(−1) + 2 = 19

6

When x = 2 then y = 1
3
(2)3 − 1

2
(2)2 − 2(2) + 2 = −4

3
.

Thus, the stationary points are (−1, 19
6

) and (2, 4
3
).

4. To classify the stationary points we have d2y
dx2

= 2x− 1.

At x = −1 we have d2y
dx2

= 2(−1)− 1 = −3 < 0. This means that the point (−1, 19
6

)

is a maximum point.

At x = 2 we have d2y
dx2

= 2(2) − 1 = 3 > 0. This means that the point (2, 4
3
) is a

minimum point.
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5. The point of inflection is when d2y
dx2

= 0⇒ 2x− 1 = 0, or x = 1
2
. When x = 1

2
then

y = 11
12

. Thus, the point (1
2
, 11
12

) is the point of inflection

x

y

y = 1
3
x3 − 1

2
x2 − 2x+ 2

−1 2

2

(−1, 19
6

)

(2,−4
3
)
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