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1

Set Theory

1.1. Introduction

Sets are very cardinal to the comprehensive and logical study of mathematics. They are the
building blocks of the whole structure of mathematics. We study the common numbers, space,
area, volume e.t.c. using sets. It is therefore, important that we start our study of mathematics
by looking at the theory of sets.

De�nition 1.1.1. A set is any well-de�ned collection, list or class of objects. The objects in a
set are called elements or members of the set.

1.1.1 Notations and Symbols

Having de�ned what a set is, we now look at the notations adopted in our discussion of set
theory. The following are the symbols and notations used in the discussion of set theory in this
publication

• sets are denoted by uppercase (capital) letters. e.g A, B, X, Y e.t.c

• elements are denoted by lowercase(small) letters. e.g a, b, c, x, etc

• the symbols ⊂ and ⊆ denote set inclusion. For example, if A and B are twos sets such
that all elements in A are found in B, we say set A is included in set B. Mathematically,
we write

A ⊂ B

This is read as `set A is a subset of set B'. Note that A ⊂ B is used when A is a proper
subset of set B, otherwise, A ⊆ B can be used.

• the symbols ∈ and /∈ denote element inclusion and element exclusion, respectively. For
example, if Y is a set given as

Y = {1, 2, 3, 4},

then we write 2 ∈ Y which is read as `2 is an element of set Y' or simply `2 is in set Y'.
If an element is not in set Y, for example 7, we write 7 /∈ Y which is read as `7 is not an
element of set Y' or simply, `7 is not in set Y.'

• the symbols ∅ and {} denote an empty set, which is a set without any elements.
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• if the number of elements in a set, say A, can be counted and is �nite, we write n(A) to
denote the total number of elements in set A. For example, if

A = {1, 3, 5} and X = {a, e, i, o, u}

then n(A) = 3 and n(X) = 5. We say the cardinalities of sets A and X are 3 and 5,
respectively. The cardinality of a set is the total number of elements in that set.

• the set containing all elements under discussion at any given time is called the Universal
set. Quite often we will denote the universal set by the uppercase letter E, but any other
uppercase letter can also be used.

1.1.2 Set Representation

Sets can be represented in a number of di�erent ways. Some of the common representations
are listing and set builder notations. This section discusses some of the important ways of
representing the various types of sets

1. Listing:

This approach simply lists all the elements of a set provided its elements are known
explicitly. Listing is used to represent sets that are countable, whether �nite or in�nite.

Example 1.1.1. X = {2, 4, 6, 8} is a list of members of set X. Similarly, Y = {0, 1, 2, 3, · · · }
is a list of the members of set Y . Set X is �nitely countable while set Y is in�nitely count-
able.

Note that listing uses the curly brackets “{” and “}”. The elements are then listed in
between the two brackets while being separated by a comma. Listing is an e�ective and
simple approach of describing a set. However, its main limitation is that it can only be
applied to sets that are countable. In mathematics and science in general, we encounter
a lot of sets that are not countable yet very useful. Since listing can not be used for such
sets, other methods must be used describe such sets.

2. Set-Builder Notation:

A more general approach in describing a set is the use of set-builder notation. Like listing,
it also uses the curly brackets “{” and “}” but adds more �uidity to the approach. It is
applied to both countable and non-countable sets. The examples below demonstrate the
use of the set-builder notation.

Example 1.1.2. If sets A = {4, 5, 6, 7, · · · }, X = {1, 2, 3, 4, 5} and W = {a, e, i, o, u},
use the set builder notation to describe sets A, X and W .

Soln:

(a) A = {x| x > 3, x ∈ N}
(b) X = {x| 1 ≤ x ≤ 5, x ∈ Z}
(c) W = {x| x is a vowel }

2



The expression A = {x| x > 3, x ∈ N} is read as �A is a set of elements x such that x is
greater than 3, and x is a natural number"

Similarly, X = {x| 1 ≤ x ≤ 5, x ∈ Z} is read as �X is a set of elements x such that 1 is
less or equal to x yet x is less or equal to 5, and x belongs to the set of integers.

W = {x| x is a vowel } reads �W is a set of elements x such that x is a vowel.

The symbols N and Z denote sets of natural numbers and integers respectively. The letter
x was used arbitrarily, any letter such as t, y e.t.c could have been used. Also, note that
set-builder notation is not necessarily unique for some cases. We will see how set-builder
notation can be used to describe uncountable sets.

3. Diagrammatic Representation:

We can also use diagrams to represent sets. One of the most important diagrams used
is the Venn Diagram which was introduced by the British Mathematician, John Venn
(1834-1923). It can be used to represent sets as well as showing the results of respective
set operations such as union, intersection e,t.c. However, like the listing approach, it is
also limited and can not be used for certain cases, as we shall see. The diagrams below
show examples of venn Diagrams.

U

A B

C

U

A B

C

4. Number line Representation: Another method used to describe sets is the use of a
number line. Like the set-builder notation, this approach can be used to describe both
the countable and uncountable sets. We will consider this approach when we look at
intervals in R

1.2. Sets of Numbers

At this point, we discuss the various types of sets of numbers. Numbers fall into di�erent
classes or groups depending on the properties they posses. We will discus two basic classes of
numbers, the real numbers and the complex numbers.

1.2.1 Real Numbers

The concept of a real number is very important to the understanding of sets and mathematics
in general. We understand that natural numbers are just positive whole numbers while integers
are simply positive and negative whole numbers with zero inclusive. Now let us consider the
following numbers:
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0.5, π,
√
2, − 1

1000
, e, 0.0000000001, −1273.0001543

What type of numbers are they? We can clearly see that these numbers are neither part of the
integers nor natural numbers. These are not whole numbers, yet they are real numbers. Infact,
the type of numbers we normally use such as integers, natural numbers and non-integers (e.g
those listed above), are all real numbers. Positive or negative, large or small, whole numbers or
decimal numbers, these are all Real Numbers. Thus, a real number is a value that represents a
quantity along a line. The following is a very basic de�nition of a real number. We will denote
the set of real numbers by the symbol R

De�nition 1.2.1. A real number is a number which can be represented by a point on a real
number line that runs from negative in�nite (−∞) to positive in�nite (∞). The collection of
all real numbers denoted R, is called the set of real numbers.

Thus, from the de�nition above, we write

R = (−∞,∞)

Note 1.2.1. Whole numbers, Natural numbers, integers, rational and irrational numbers are
all real numbers. As matter of fact, any number YOU can think of at this moment, is nothing
but a real number.

Real numbers can further be divided into several categories. The following are the di�erent
types of real numbers.

1. Natural Numbers: These are real numbers that have no decimal and are bigger than
zero. The counting numbers from 1 to in�nite are called natural numbers. We use N to
denote the set of natural numbers. Thus,

N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, · · · }

2. Whole Numbers: These are positive real numbers that have no decimals, and also zero.
Natural numbers are also whole numbers. The counting numbers from zero to in�nite are
called whole numbers. We use W to denote the set of whole numbers, i.e

W = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, · · · }

Note that we can write

N = {x| x ≥ 1, x ∈W} since N ⊂W

3. Integers: A collection of positive and negative whole numbers with zero inclusive, is
called the set of integers and is denoted by Z. Thus,

Z = {· · · ,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, · · · }
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4. Prime Numbers: A prime number is a natural number that has only two factors, namely
1 and itself. In other words, a number that is divisible by 1 and itself. Lets denote the
primes by P, then

P = {2, 3, 5, 7, 11, 13, 17, 19, 23, · · · }

5. Even Numbers: An even number is an integer which is �evenly divisible" by two. This
means that if the integer is divided by 2, it yields no remainder. Zero is an even number
because zero divided by two equals zero. Even numbers can be either positive or negative.
The collection of all even numbers constitute the set of even numbers.

6. Odd Numbers: An odd number is an integer which is not a multiple of two. If it is
divided by two the result is a fraction. One is the �rst odd positive number. The next
four bigger odd numbers are three, �ve, seven, and nine. So some sequential odd numbers
are:

{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25...}

7. Rational Numbers: These are real numbers that can be written down as fractions of
integers. Mathematically, they can be written in the form a

b
, where a and b are integers

with b 6= 0 . Note that all Integers are also rational numbers. We will denote the set
of all rational numbers by Q. We can not display the set of rational numbers since it is
in�nitely uncountable. The following are some examples of rational numbers:

0.5, 17.312, 2.251, 0.3, −1, 0,
3

7
, −13

15

Example 1.2.1. Show that every integer is a rational number

Soln:

Let Z be the set of all integers. Also, let z be any integer chosen from Z. Then z can be
written as

z =
z

1
Since both z and 1 are integers, z is rational. Since z was chosen arbitrary, every integer
must be rational.

Example 1.2.2. Show that 0.3 is a rational number by writing it in the form a
b
where a

and b are integers with b 6= 0

Soln:

We let
x = 0.3

Then multiplying both sides of this equation by 10 gives us

10x = 3.3

10x− x =3.3− 0.3

9x =3

x =
1

3

Therefore, we conclude that 0.3 = 1
3
. Since both 1 and 3 are integers, 0.3 is a rational

number.
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Example 1.2.3. Express −3.532 in the form a
b
where a and b are integers with b 6= 0

Soln:

Let y = −3.532.
Then multiplying both sides of this equation by 10 gives us: 10y = −35.32 (i)

Further multiplication of y = −3.532 by 1000 gives us: 1000y = −3532.32 (ii)

subtracting the two equations, we have:

1000y − 10y =− 3532.32− (−35.32)
990y =− 3497

y =− 3497

990

Therefore, −3.532 = −3497
990

. Since 3497 and 990 are integers, −3.532 is rational.

8. Irrational Numbers: An irrational number is a real number whose decimal part does
not repeat nor terminate. These are real numbers that can not be written as a fraction of
integers. Irrational numbers can not be written in the form a

b
, where a and b are integers

with b 6= 0. If a real number is not rational, then it must be irrational. We denote the set
of irrational numbers by Q′. Like the rational numbers, irrational numbers are in�nitely
uncountable. The following are some examples of irrational numbers:

√
2,

√
3,

√
2 + 4, π, e,

√
3− 1, −3−

√
2, −

√
2

3

Theorem 1.2.2. If k ∈ Z and k2 is divisible by 2, then k is also divisible by 2.

Example 1.2.4. Prove that
√
2 is irrational.

Proof: We prove this by contradiction. Suppose that
√
2 is rational. Then by de�nition of a

rational number, we can write
√
2 as:

√
2 =

a

b
, where a, b ∈ Z with b 6= 0

and we assume that the fraction a
b
is in its lowest form, ie, there are no common factors of a

and b. Then, √
2 =

a

b
=⇒ 2b2 = a2 ∗

This simply means that a2 is divisible by 2. Since a is an integer, by the theorem above, we
conclude that a is also divisible by 2. Hence, we can write a = 2m for some m ∈ Z. From ∗,
we have

2b2 = a2 = (2m)2 = 4m2 so that b2 = 2m2

This means that b2 is divisible by 2. By the theorem above, b is also divisible by 2 since b ∈ Z.

Since both a and b are now divisible by 2, this contradicts the statement that a
b
is in its lowest

form. Hence,
√
2 can not be written in the form a

b
with a, b ∈ Z such that a

b
is in its lowest

form. Therefore
√
2 must be irrational.
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Example 1.2.5. Prove that 5 +
√
2 is irrational.

Proof: Prove by contradiction. Suppose that 5 +
√
2 is rational. Then we can write 5 +

√
2

as a ratio of two integers:

5 +
√
2 =

p

q
where p, q ∈ Z with q 6= 0

and assume that the fraction p
q
is in its lowest form. Making

√
2 the subject of the formula, we

have √
2 =

p− 5q

q
∗

From ∗, we can see that L.H.S is irrational while R.H.S is rational. This is not possible. Thus
our assumption must be wrong. We conclude therefore, that 5 +

√
2 is irrational.

Surds and Rationalisation

Note that some of the examples of irrational numbers are
√
2,
√
3 and

√
7. The square root

symbol
√
... is called the radical sign. We use it to indicate a positive square root of a

number. For example,
√
16 indicates the positive square root of 16 which is 4. The symbol n

√
...

is used to indicate the nth root of a number. For example, the 5th root of 32 is 2, hence, we
write 5

√
32 = 2. The numbers of the form n

√
x are called radicals or surds. For any two positive

integers a and b, the following hold;

•
√
ab =

√
a
√
b e.g. i)

√
6 =

√
(2)(3) =

√
2
√
3 ii)

√
80 =

√
(16)(5) =

√
16
√
5 = 4

√
5

•
√

a
b
=
√
a√
b

e.g. i)
√

16
81

=
√
16√
81

= 4
9

ii)
√

2
3
=
√
2√
3

• a
√
b =
√
a2b e.g. 4

√
3 =
√
42 × 3 =

√
(16)(3) =

√
48

•
√
a2 = a e.g.

√
72 = 7 Similarly, we have

√
(53)2 = 53

Example 1.2.6. Simplify: i)
√
45 ii)

√
450 iii)

√
50 +

√
2− 2

√
18 +

√
8

Sol:

i)
√
45 =

√
(9)(5) =

√
9
√
5 = 3

√
5

ii)
√
450 =

√
(9)(25)(2) =

√
9
√
25
√
2 = (3)(5)

√
2 = 15

√
2

iii) we simplify and add up the surds
√
50 +

√
2− 2

√
18 +

√
8 =
√
(25)(2) +

√
2− 2

√
(9)(2) +

√
(4)(2)

=
√
25
√
2 +
√
2− 2

√
9
√
2 +
√
4
√
2

=5
√
2 +
√
2− 2(3)

√
2 + 2

√
2

=5
√
2 +
√
2− 6

√
2 + 2

√
2

=(5 + 1− 6 + 2)
√
2

=2
√
2
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Certain radicals can be made simple by transforming the denominator into a rational num-
ber. This process is called rationalization of the denominator. The method makes use of the
di�erence of two squares,

a2 − b2 = (a− b)(a+ b)

The following examples help demonstrate the approach

Example 1.2.7. For each of the following, rationalize the denominator and simplify.

i) 1√
2

ii) 1
1+
√
3

iii) 1√
2
+
√
8 iv) 1+

√
x

3−
√
x

Sol:

i) We have 1√
2
= 1√

2
× 1 = 1√

2
×
√
2√
2
=
√
2
2

ii) We have 1
1+
√
3
× 1 = 1

1+
√
3
× 1−

√
3

1−
√
3
= 1−

√
3

1−3 = 1−
√
3

−2 = −1
2
+
√
3
2

iii) We have 1√
2
+
√
8 =

√
2
2
+
√

(4)(2) =
√
2
2
+ 2
√
2 =

√
2+4
√
2

2
= 5

√
2

2

iv) We have 1+
√
x

3−
√
x
= 1+

√
x

3−
√
x
× 1 = 1+

√
x

3−
√
x
× 3+

√
x

3+
√
x
= (1+

√
x)(3+

√
x)

9−x = (x+3)+4
√
x

9−x

Note 1.2.2. It is important to take note of the following

• Any real number is either rational or irrational.

• Any number with a terminating or recurring decimal part is rational

• Any number with a non terminating yet not recurring decimal part is irrational

• Q ∪Q′ = R

• Q ∩Q′ = ∅

• N ⊂W ⊂ Z ⊂ Q ⊂ R

Intervals in R

We now discuss the important concept of intervals of real numbers. These are basically subsets
of R. Let a, b ∈ R such that a < b. Then, there is an in�nite number of real numbers that lie
between the two real numbers a and b. The set of all real numbers between a and b constitute
an interval in R from point a to point b. The following are the types of intervals from a to b:

• I1 = (a, b) is the set of all real numbers between a and b, excluding a and b. In set builder
notation form, we have

(a, b) = {x| a < x < b, x ∈ R}

Here, the interval I1 = (a, b) consists of all real numbers between a and b but not
including a nor b.
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• I2 = (a, b] is the set of all real numbers between a and b including b, but excluding a. In
set builder notation form, we have

(a, b] = {x| a < x ≤ b, x ∈ R}

Here, the interval I2 = (a, b] consists of all real numbers between a and b with b inclusive,
yet a excluded

• I3 = [a, b) is the set of all real numbers between a and b including a, but excluding b. In
set builder notation form, we have

[a, b) = {x| a ≤ x < b, x ∈ R}

Here, the interval I3 = [a, b) consists of all real numbers between a and b with a inclusive,
yet b excluded

• I4 = [a, b] is the set of all real numbers between a and b, including both a and b. In set
builder notation form, we have

[a, b] = {x| a ≤ x ≤ b, x ∈ R}

Here, the interval I4 = [a, b] consists of all real numbers between a and b, with both
a and b included in the set.

1.2.2 Set Operations

We are familiar with operations of addition, subtraction, multiplication and division. These are
number operations since they are performed on numbers. Sets behave like numbers. They have
their own operations which include union, intersection, complementation and product. This
section discuses some of the set operations as well as the laws that govern them.

1. Intersection:

The intersection of two sets, say A and B, is denoted by A ∩ B and is de�ned as the set
that contains elements common to both A and B. In symbols, we can write

A ∩B = {x| x ∈ A and x ∈ B}

Pictorially, we have

9



E

A B

E

A B

Example 1.2.8. If A = {1, 2, 3}, B = {3, 4, 5} and C = {4, 5, 6}, then we can see that:

A ∩B = {3}, A ∩ C = {}, and B ∩ C = {4, 5}

Example 1.2.9. If A = (1, 3), B = [3, 5] and C = (0, 4], �nd the follwing:

i) A ∩B ii) A ∩ C and iii) B ∩ C

Soln:

i) A ∩B = (1, 3) ∩ [3, 5]

= {}
= ∅

ii) A ∩ C = (1, 3) ∩ (0, 4]

= (1, 3)

iii) B ∩ C = [3, 5] ∩ (0, 4]

= [3, 4]

2. Union:

The union of two sets, say A and B, is denoted by A ∪ B and is de�ned as the set that
contains elements found either in A or in B. In symbols, we can write

A ∪B = {x| x ∈ A or x ∈ B}

Pictorially, we have

E
A B

EA B

Example 1.2.10. If X = {1, 2, 3}, Y = {3, 4, 5} and Z = {4, 5, 6}, then, clearly:

X ∪ Y = {1, 2, 3, 4, 5}, X ∪ Z = {1, 2, 3, 4, 5, 6}, and Y ∪ Z = {3, 4, 5, 6}
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Example 1.2.11. If A = (1, 3), B = [3, 5] and C = (0, 4], �nd the follwing:

i) A ∪B ii) A ∪ C and iii) B ∪ C

Soln:

i) A ∪B = (1, 3) ∪ [3, 5]

= (1, 5]

ii) A ∪ C = (1, 3) ∪ (0, 4]

= (0, 4]

iii) B ∪ C = [3, 5] ∪ (0, 4]

= (0, 5]

Example 1.2.12. If A = (0, 1), B = [0, 1] and C = [1,∞), �nd the following:

i) A ∪B ii) A ∪ C and iii) B ∪ C

Soln:

i) A ∪B = (0, 1) ∪ [0, 1]

= [0, 1]

= B Since A ⊂ B. Similarly A ∩B = A

ii) A ∪ C = (0, 1) ∪ [1,∞)

= (0,∞)

iii) B ∪ C = [0, 1] ∪ [1,∞)

= [0,∞)

3. Complementation:

Let E be the universal set and A ⊂ E. The set of all the elements in the universal set
E but not in set A is called the complement of A in E. It is denoted by A′ or Ac. In
symbols, we write

A′ = {x| x /∈ A but x ∈ E}
Pictorally

A

E

We sometimes treat the complement as subtraction, i.e

A′ = E − A = E ∩ A′
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Example 1.2.13. Let E = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} be the universal set. Further, let
A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8, 10} and C = [5, 6]

Soln:

First we notice that A ⊂ E and B ⊂ E. However C is not a subset of E.

Then, A′ = {6, 7, 8, 9, 10} and B′ = {1, 3, 5, 7, 9}. However, No C ′

Example 1.2.14. Let R = (−∞,∞) be the universal set. Further, suppose that X =
[1, 4], Y = [−3, 2), A = (−2,∞) and B = [−∞, 0] are subsets of R = (−∞,∞). Find the
complements of X, Y , A and B and display the results on the real number line.

Soln:

i) X ′ = R−X ii) Y ′ = R− Y
= (−∞,∞)− [1, 4] = (−∞,∞)− [−3, 2)
= (−∞, 1) ∪ (4,∞) = (−∞,−3) ∪ [2,∞)

iii) A′ = R− A iv) B′ = R−B
= (−∞,∞)− (−2,∞) = (−∞,∞)− [−∞, 0]
= (−∞,−2] = (0,∞)

Example 1.2.15. Let E = [−10, 10] be the universal set. Further, let X = [−2, 8), Y =
(−10, 3) and Z = (−1, 10] be subsets of E. Find the following sets and display the results
on the number line, where possible.

a) X − Y b) Y −X c) X − (Y − Z) d) X ∪ (Y ∩ Z) e) X ′ ∪ Z

Sol:

a) X − Y denotes the elements in X but not in Y . i.e, X − Y = X ∩ Y ′. Hence,

X − Y = [−2, 8)− (−10, 3) = [3, 8)

b) Y −X denotes the elements in Y but not in X. i.e, Y −X = Y ∩X ′. Hence,

Y −X = (−10, 3)− [−2, 8) = (−10,−2)
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c) X − (Y − Z) = [−2, 8)− {(−10, 3)− (−1, 10]} = [−2, 8)− (−10,−1] = (−1, 8)

d) X ∪ (Y ∩ Z) = [−2, 8) ∪ ((−10, 3) ∩ (−1, 10]) = [−2, 8) ∪ (−1, 3) = [−2, 8)

e) X ′ ∪ Z = [−10,−2) ∪ [8, 10] ∪ (−1, 10] = [−10,−2) ∪ (−1, 10]

Laws On Set Operations

The following are the laws obeyed by sets. We call The Boolean Laws. Suppose that X, Y
and Z are subsets of the universal set E. Then the following hold:

• Idempotence:

a) X ∪X = X b) X ∩X = X

• Associativity:

a) (X ∪ Y ) ∪ Z = X ∪ (Y ∪ Z) b) (X ∩ Y ) ∩ Z = X ∩ (Y ∩ Z)

• Commutativity:

a) X ∪ y = Y ∪X b) X ∩ Y = Y ∩X

• Distributivity:

a) X ∪ (Y ∩Z) = (X ∪Y )∩ (X ∪Z) b) X ∩ (Y ∪Z) = (X ∩Y )∪ (X ∩Z)

• De Morgan's:

a) (X ∪ Y )′ = Y ′ ∩X ′ b) (X ∩ Y )′ = Y ′ ∪X ′

• Properties of the Complement:

a) X ′ ∪X = E b) X ′ ∩X = ∅ c) (X ′)′ = X

• Properties of the universal set:

a) X ∪ E = E b) X ∩ E = X c) E ′ = ∅

• Properties of the empty set:

a) X ∪ ∅ = X b) X ∩ ∅ = ∅ c) ∅′ = E

We will use these laws to simplify some complex set expressions
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Example 1.2.16. Let E = [0, 1] be the universal set. If X = (0.5, 1) and Y = (0.8, 1] Verify
the De Morgan's Law shown below

(X ∩ Y )′ = X ′ ∪ Y ′

Soln: We can see that X ′ = [0, 0.5] ∪ {1} and Y = [0, 0.8]. Therefore,

LHS =(X ∩ Y )′

=((0.5, 1) ∩ (0.8, 1])′

=(0.8, 1)′

=[0, 0.8] ∪ {1}

Thus (X ∩ Y )′ = [0, 0.8] ∪ {1}

RHS =X ′ ∪ Y ′

=((0.5, 1) ∩ (0.8, 1])′

=(0.8, 1)′

=[0, 0.8] ∪ {1}

Thus X ′ ∪ Y ′ = [0, 0.8] ∪ {1}

Therefore, (X ∩ Y )′ = X ′ ∪ Y ′, proving the De Morgan's Law.

Example 1.2.17. Let E denote the universal set. Further, let X and Y be two sets in E.
simplify as far as possible the expression

[(X ∩ Y )′ ∪ (X − Y )]′

Sol: we use the laws on set operation

[(X ∩ Y )′ ∪ (X − Y )]′ =[(X ∩ Y )′ ∪ (X ∩ Y ′)]′

=[(X ∩ Y )′ ∪ (X ∩ Y ′)]′

=(X ∩ Y ) ∩ (X ∩ Y ′)′

=(X ∩ Y ) ∩ (X ′ ∪ Y )

=[(X ∩ Y ) ∩X ′] ∪ [(X ∩ Y ) ∩ Y ]

=∅ ∪ (X ∩ Y )

=X ∩ Y

Example 1.2.18. Prove the DeMorgan's Law: (A ∪B)′ = A′ ∩B′

Sol: Suppose that x ∈ (A ∪ B)′. Then, x ∈ A ∪ B. This is only possible if x ∈ A and
x ∈ B. This means that x ∈ A′ and x ∈ B′. Hence, x ∈ A′ ∩ B′. Therefore, we conclude that
(A ∪B)′ ⊂ A′ ∩B′

Conversely, suppose x ∈ A′ ∩ B′. Then x ∈ A′ and x ∈ B′. This means that x ∈ A′ and
x ∈ B′. Hence, x ∈ (A ∪B)′ implying that x ∈ (A ∪B)′. Therefor, A′ ∩B′ ⊂ (A ∪B)′
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1.2.3 Complex Numbers

So far, we have discussed the real numbers and some of their properties. We now turn our
attention to another type of numbers called complex numbers. The collection of all complex
numbers is called the set of complex numbers and is usually denoted as C. To better understand
the concept of a complex number, let us consider the following radicals;
√
−2 =

√
(2)(−1) =

√
2
√
−1

√
−3 =

√
(3)(−1) =

√
3
√
−1

√
−4 =

√
(4)(−1) =

√
4
√
−1 = 2

√
−1

√
−5 =

√
(5)(−1) =

√
5
√
−1

It is convenient to introduce the symbol;

i =
√
−1

This is called the imaginary unit. The above surds can now be written as shown below;
√
−2 =

√
(2)(−1) =

√
2
√
−1 = i

√
2

√
−3 =

√
(3)(−1) =

√
3
√
−1 = i

√
3

√
−4 =

√
(4)(−1) =

√
4
√
−1 = 2

√
−1 = 2i

√
−5 =

√
(5)(−1) =

√
5
√
−1 = i

√
5

Thus, we can write
√
−25 = 5i,

√
−16 = 4i,

√
−100 = 10i and so on.....

Properties of the imaginary unit i

• i2 = i× i =
√
−1×

√
−1 = −1. Hence, i2 = −1

• i3 = i× i =
√
−1×

√
−1×

√
−1 = −1× i = −i. Hence, i3 = −i

• i4 = i2 × i2 = (−1)× (−1) = 1. Hence, i4 = 1

• Generally, i2n = (−1)n

• Generally, i2n+1 = (−1)n i

De�nition 1.2.3. Let z be a complex number. The standard form or cartesian form of a
complex number z is given as

z = x+ yi or z = x+ iy

where x, y ∈ R. The real number x is called the real part of z while the real number y is called
the imaginary part of z

From this de�nition, we see that every complex number z is written in terms of its real and
imaginary parts. The imaginary part is the part that is multiplied by the imaginary unit i.
Hence, if z = x+ iy, then

x = Re(z) which is read as �x is the real part of z"

y = Im(z) which is read as �y is the imaginary part of z"
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Example 1.2.19. For each of the following complex numbers, determine the real part and the
imaginary part.

i) 3 + 2i ii) 7− 4i iii) 1− i iv) 4i v) -2 vi) -10i

Sol: Exercise

De�nition 1.2.4. A complex number z = x+ yi is said to be pure real if Im(z) = 0, i.e y = 0.

De�nition 1.2.5. A complex number z = x+ yi is said to be pure imaginary if Re(z) = 0, i.e
x = 0.

Example 1.2.20. The number 4 = 4 + 0i. Hence 4 is pure real. Similarly, the number
−2

7
= −2

7
+ 0i is pure real.

On the other hand, the number −3i = 0− 3i is pure imaginary. similarly, 0.023i = 0 + 0.023i
is pure imaginary.

De�nition 1.2.6. The collection of all complex numbers constitute the set of complex numbers
denoted by C. Therefore

C =
{
x+ yi| x, y ∈ R, i =

√
−1
}

Note 1.2.3. The following follow from the de�nitions above.

• Any real number a ∈ R can be written as a = a + 0i. Hence all real numbers are also
complex numbers

• Therefore the set of real numbers is a subset of the set of complex numbers

• N ⊂W ⊂ Z ⊂ Q ⊂ R ⊂ C

De�nition 1.2.7. Two complex numbers are equal if and only if their real parts are equal and
their imaginary parts are also equal.

From the de�nition, if z1 = x1+y1i and z2 = x2+y2i are two complex numbers, z1 = z2 implies
that x1 = x2 and y1 = y2

Example 1.2.21. Find the values of x and y given that 2x+ 4i = 6 + i(x+ y)

Sol: Using the de�nition for equality of complex numbers, we equate the real parts and the
imaginary parts. Thus,

2x = 6 and 4 = x+ y

Solving these two simultaneously gives x = 3 and y = 1
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Addition and Subtraction of Complex Numbers

To add two complex numbers, add the real part of one complex number to the real part of the
other complex number and add the imaginary of one complex number to the imaginary of the
other complex number. Similarly, to subtract two complex numbers, subtract the real parts
and subtract the imaginary parts.

Let z1 = x1 + y1i and z2 = x2 + y2i be two complex numbers. Then

a) z1 + z2 = (x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i and

b) z1 − z2 = (x1 + y1i)− (x2 + y2i) = (x1 − x2) + (y1 − y2)i

Example 1.2.22. Given that z1 = −2 + 3i and z2 = 4i, �nd i) z1 + z2 ii) z2 − z1

Sol: Note that z2 = 4i can be written as z2 = 0 + 4i. Thus,

i) z1 + z2 = (−2 + 3i) + (0 + 4i) = (−2 + 0) + (3 + 4)i = −2 + 7i

ii) z2 − z1 = (0 + 4i)− (−2 + 3i) = (0− (−2)) + (4− 3)i = 2 + 1i = 2 + i

Example 1.2.23. If z = 3− 11i and w = −1 + i, �nd i) z + w ii) z − w

Sol:

i) z + w = (3− 11i) + (−1 + i) = (3 + (−1)) + (−11 + 1)i = 2− 10i

ii) z − w = (3− 11i)− (−1 + i) = (3− (−1)) + (−11− 1)i = 4− 12i

Multiplication of Complex Numbers

To multiply complex numbers, we multiply as we usually do in algebra, but remembering that
i2 = −1 Let z1 = x1 + y1i and z2 = x2 + y2i be two complex numbers. Then

z1z2 =(x1 + y1i)(x2 + y2i)

=x1x2 + x1y2i+ y1ix2 + y1y2i
2

=x1x2 + x1y2i+ y1ix2 − y1y2
=(x1x2 − y1y2) + (x1y2 + x2y1)i

Hence, if z1 = x1 + y1i and z2 = x2 + y2i are two complex numbers, then

z1z2 = (x1x2 − y1y2) + (x1y2 + x2y1)i

This is the multiplication of two complex numbers.

Example 1.2.24. Let z1 = 3 + 2i and z2 = 4 + 5i. Determine z1z2

Sol: using z1z2 = (x1x2 − y1y2) + (x1y2 + x2y1)i, we have

z1z2 = (x1x2 − y1y2) + (x1y2 + x2y1)i = [(3)(4)− (2)(5)] + [(3)(5) + (4)(2)]i = 2 + 23i
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Example 1.2.25. Evaluate the following:

i) (2 + i
√
2)(1 + i) ii) (2 + i

√
2)2 iii) (1− i)(i) iv) (3− i)(1 + 2i)

Sol:

i) (2 + i
√
2)(1 + i) = 2 + 2i+ i

√
2 + i2

√
2 = 2−

√
2 + (2 +

√
2)i

ii) (2 + i
√
2)2 = 4 + 4i

√
2 + 2i2 = 4− 2 + 4i

√
2 = 2 + i4

√
2

iii) (1− i)(i) = i− i2 = i− (−1) = 1− i

iv) (3− i)(1 + 2i) = 3 + 6i− i− 2i2 = 5 + 5i

We have discussed the addition, subtraction and multiplication of complex numbers. Division
however is not as straight forward. We require a preliminary discussion. Thus, before we discuss
division, we need to discuss the concept of a conjugate.

Conjugate of a Complex number

De�nition 1.2.8. Let z = x+ yi be a complex number. Then the conjugate of z denoted by z
is de�ned as

z = x− yi

Example 1.2.26. Find the conjugate of the following complex numbers;

i) 3 + 4i ii) 1− 3i iii) 7i iv) 5 v) 1 + i vi) −5− i
√
2

Sol:

i) If z = 3 + 4i, then z = 3− 4i ii) If z = 1− 3i, then z = 1 + 3i

iii) If z = 0+ 7i, then z = 0− 7i = −7i iv) If z = 5+ 0i, then z = 5− 0i = 5

v) If z = 1+ i, then z = 1− i vi) If z = −5− i
√
2, then z = −5+ i

√
2

Note from iv) that the conjugate of a pure real number is just itself.

Properties of the Conjugate

Let z = x + yi be a complex number and z = x − yi be its conjugate. Then the following
properties hold:

• zz = x2 + y2

• |z| =
√
x2 + y2. This is called the modulus or absolute value of z.

• Hence, it is easy to see that zz = |z|2

• z + z = 2Re(z). In this case, z + z = 2x

• z − z = 2Im(z). In this case, z − z = 2y

• If z1 and z2 are two complex numbers, then z1z2 = z1 z2
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• If z1 and z2 are two complex numbers, then z1 + z2 = z1 + z2

• If z1 and z2 are two complex numbers, then z1 − z2 = z1 − z2

• If z1 and z2 are two complex numbers, then
(
z1
z2

)
= z1

z2

Example 1.2.27. Find the modulus for each of the following complex numbers.

i) z = 1− 6i ii) z =
√
3
2
+ i

2
iii) z = −4

Sol: Recall that the modulus of a complex number is given by |z| =
√
x2 + y2

i) If z = 1− 6i, then |z| =
√

(1)2 + (−6)2 =
√
37

ii) If z =
√
3
2
+ i

2
, then |z| =

√(√
3
2

)2
+
(
1
2

)2
=
√

3
4
+ 1

4
= 1

iii) If z = −4 + 0i, then |z| =
√

(−4)2 + 02 =
√
4 = 2

Example 1.2.28. Let z = x+ yi. Given that zz + 2iz = 12 + 16i, �nd z.

Sol: Exercise

Division of Complex Numbers

Let z1 = x1+y2 and z2 = x2+y2 be two complex numbers. To divide any two complex numbers,
say z1 and z2, we write

z1
z2

and the multiply both the numerator and the denominator by the
conjugate of z2. Then we simplify the expression. i.e

z1
z2

=
z1z2
z2z2

=
z1z2
|z2|2

Example 1.2.29. Evaluate the following and express the result in standard form:

i) 2−4i
4+3i

ii) 2
2−i iii) 1

(1−i)2 iv) 1
(2+i)(1+i)

v) 1−2i
(1+i)3

Sol: Multiply by the conjugate of the denominator

i)

2− 4i

4 + 3i
=
(2− 4i)(4− 3i))

(4 + 3i)(4− 3i)

=
8− 6i− 16i+ 12i2

42 + 32

=
8− 12− 22i

25

=− 4

12
− 22

25
i

19



ii)

2

2− i
=

2(2 + i)

(2− i)(2 + i)

=
4 + 2i

4 + 1

=
4 + 2i

5

=
4

5
+

2

5
i

iii)

1

(1− i)2
=

1

(1− i)(1− i)

=
1

1− 2i− 1

=
1

−2i

=
1

0− 2i

=
1(0 + 2i)

(0− 2i)(0 + 2i)

=
2i

−4i2

=
2i

4

=
i

2

iv)

1

(2 + i)(1 + i)
=

1

2 + 2i+ i+ i2

=
1

2− 1 + 3i

=
1

1 + 3i

=
1(1− 3i)

(1 + 3i)(1− 3i)

=
1− 3i

1 + 9

=
1− 3i

10

=
1

10
− 3

10
i

iv) Exercise
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1.3. Binary Operations

We conclude our discussion of set theory by looking at the binary operations on a set.

De�nition 1.3.1. Let X denote a set. A binary operation on set X, denoted by ∗, is an
operation which assigns to each pair of elements a, b ∈ X, a unique element a ∗ b ∈ X.

Note 1.3.1. Two points are worth remembering when considering whether an operation ∗ is
binary or not

• the operation ∗ must act on every pair a, b ∈ X to produce an output a ∗ b.

• the output a ∗ b must be unique and an element of X.

Example 1.3.1. Let N denote the set of all natural numbers. Show that ∗ = + is a binary
operation on N.

Sol: Let a, b ∈ N. Then a ∗ b = a + b ∈ N. Also, for any two natural numbers, we know that
a+ b is unique and is also a natural number. Hence, ∗ = + is a binary operation on N.

Example 1.3.2. Let N denote the set of all natural numbers. Show that ∗ = × is a binary
operation on N.

Sol: Let a, b ∈ N. Then a ∗ b = a× b ∈ N. Also, for any two natural numbers, a× b is unique.
Hence, ∗ = × is indeed a binary operation on N.

The two examples above, show that the operations of addition and multiplication are each a
binary operation on the set of natural numbers. We can say that the set of natural numbers is
closed under addition or multiplication.

Example 1.3.3. Let N denote the set of all natural numbers. Show that ∗ = − is NOT a
binary operation on N.

Sol: Let a, b ∈ N. Then a ∗ b = a − b is not in N if a < b. Hence, ∗ = − is not a binary
operation on N. To see this, suppose a = 2 and b = 7. Then a ∗ b = 2 ∗ 7 = 2 − 7 = −5, and
we can clearly see that −5 is not in N

Example 1.3.4. Let Z denote the set of all integers, show that ∗ = ÷ is NOT a binary
operation on Z

Sol: Exercise
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1.3.1 Characteristics of Binary Operations

Let X be a set. Further, let a, b, c ∈ X and ∗ be a binary operation on set X

1. Closure: if a ∗ b ∈ X for any pair a, b ∈ X, then set X is said to be closed under the
binary operation ∗

2. Commutative: if a ∗ b = b ∗ a for every pair a, b ∈ X, then the binary operation ∗ is
said to be commutative.

3. Associativity: if (a ∗ c) ∗ c = a ∗ (b ∗ c) for any elements a, b, c ∈ X, then the binary
operation ∗ is said to be associative.

4. Identity: If there is an element I ∈ X such that I ∗a = a∗ I = a for any element a ∈ X,
then I is called the identity element with respect to ∗

5. Inverse: if for every element a ∈ X, there exists another element a−1 ∈ X such that
a ∗ a−1 = a−1 ∗ a = I, then a−1 is called an inverse of a with respect to ∗

Example 1.3.5. Let X = {x| x > 0, x ∈ R}. For any pair a, b ∈ X, de�ne an operation ∗ by
a ∗ b = 2a+ b.

i) determine whether ∗ is a binary operation on X.

ii) determine whether ∗ is commutative

iii) evaluate 2 ∗ 3 and 2
7
∗ 10

iv) determine the value (a ∗ b) ∗ c and a ∗ (b ∗ c)

Sol: Let a, b, c ∈ X. Then a > 0, b > 0 and c > 0

i) For any elements a, b ∈ X, a ∗ b = 2a+ b > 0. Hence, 2a+ b ∈ X and is unique.

Therefore, ∗ is a binary operation on X

ii) a ∗ b = 2a+ b while b ∗ a = 2b+ a. We can see that 2a+ b 6= 2b+ a implying that

a ∗ b 6= b ∗ a. Hence, ∗ is not commutative.

iii) 2 ∗ 3 = 2(2) + 3 = 7. and 2
7
∗ 10 = 2(2

7
) + 10 = 74

7

iv) (a ∗ b) ∗ c = (2a+ b) ∗ c = 2(2a+ b) + c = 4a+ 2b+ c while

a ∗ (b ∗ c) = 2a+ (b ∗ c) = 2a+ (2b+ c) = 2a+ 2b+ c. Thus

(a ∗ b) ∗ c 6= a ∗ (b ∗ c). Therefore, ∗ is not associative

Example 1.3.6. Let ∗ be a binary operation de�ned by a ∗ b = (b− a)3 + 2ab, where a, b ∈ Z.

i) determine whether ∗ is commutative on Z

ii) evaluate −10 ∗ (3 ∗ 10) and (−10 ∗ 3) ∗ 10

iii) Is ∗ associative on Z?

Sol: Exercise
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Exercise 1

1. Let E = {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} be the universal set. If A = {−2,−1, 0, 1, 2},
B = {2, 4, 6} and C = {−5,−4} are subsets of U ;

a) Find: i) C ∩ (A−B) ii) (U − A) ∩ (B − C) iii) A− (C −B)

b) Verify that: i) A∩ (B∩C) = (A∩B)∩C and ii) A∪ (B∩C) = (A∪B)∩ (A∪C)

c) Verify the De Morgan's laws: i) (A ∩B)′ = A′ ∪B′ (ii) (A ∪B)′ = A′ ∩B′

2. Given that X and Y are subsets of the universal set E, show that:

i) (X ∩ Y ) ∪ (X ∩ Y ′) = X (ii) X ∪ Y = X ∪ (X ′ ∩ Y )

3. Let X and Y denote two sets. If X ⊂ Y simplify each of the following as far as possible
and where necessary, show the results in a Venn diagram.

i) X ∩ Y ii) X ∪ Y iii)X ′ ∩ Y ′ iv)X ∩ Y ′ v)X ′ ∪ Y ′

4. Let E denote the universal set. If X, Y, Z are subsets of E such that X, Y, Z all intersect,
simplify and shade the parts described by the following sets in separate Venn diagrams:

i) [(X ′∪Z)′∪Y ′]′ ii) (Y −X ′)−X ′ iii) [X ′∪(Y −X)]′ iv) Y ∪(X∩Y )

5. Let X = [−10, 10] be the universal set. Let A = (−2, 6], B=[-4,7], C = [−1, 8] and
D = (3, 5]. Find each of the following sets and display it on the real number line.

i) A′ ii) X − A iii) (A ∪ C)′ iv) (B − A) ∪ C v) X − (C −D)

6. Let R = (−∞,∞) be the universal set. Further, let A = (−8, 6], B = [4,∞), C = [0, 1),
D = [1,∞), E = (−∞, 1) and F = [5,∞) be subsets of the universal set R.
a) Find each of the following and represent the results on the real number line:

i)A∪B ii) (A∩B)′. iii) C ′ iv)B∩D v) C∩E ′ vi)B∪F vii)D∩E
b) Verify De morgan's laws: i) (A ∩B)′ = A′ ∪B′ and ii) (A ∪B)′ = A′ ∩B′

c) Verify that: i) A∩ (B∩C) = (A∩B)∩C and ii) A∪ (B∩C) = (A∪B)∩ (A∪C)

7. Let R = (−∞,∞) be the universal set. If A = (−5, 8), X = (0, 1), B = [7,∞) and
Y = [0, 1], �nd:

i) X ′ ii) Y ′ iii) B − A iv) A−B v) Y ∩X vi) R−X vii) R− Y viii) X − R

8. Express the following numbers in the form a
b
where a and b are integers, with b 6= 0.

i) 0.1 ii) 12.13 iii) 3.375 iv)−3.532 v) 0.714285 v)−0.7 vi) 21.32113

9. Prove that the following are irrational numbers

i)
√
2 ii)

√
3+1 iii)

√
3 iv) −1−

√
2 v) 6+

√
2 vi) −

√
3 vii)

√
2−2
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10. a) Simplify the following leaving your answer in surd form where necessary

i)
√
48
√
6 ii)

√
2x2y2

√
2x vi)(

√
3−
√
7)(
√
3 +
√
7) iii)

√
84√

6
√
14

iv)
√
12 +

√
147−

√
27

b) Rationalize the denominator of each of the following:

i) 2
√
3−
√
2

4
√
3

ii) x
x+
√
y

iii) 2
√
7+
√
3

3
√
7−
√
3

iv) x−
√
x2−9

x+
√
x2−9 v) 1

(
√
2+1)(

√
3−1) vi) h

√
x
√
x+h√

x−
√
x+h

vii) 6+2
√
7

3−
√
7

c) Rationalize the numerator of each of the following:

i) 2
√
3−
√
2

4
√
3

(ii)
x−√y
x

(iii) 2
√
7+
√
3

3
√
7−
√
3

(iv) x−
√
x2−9

x+
√
x2−9 (v) (

√
2+1)(

√
3−1)

6
(vi) h

√
x
√
x+h√

x−
√
x+h

(vii) 6+2
√
7

3−
√
7

11. Express
√
108 in the form k

√
3 where k is an integer.

12. a) Let Z be the set of integers with a, b ∈ Z. State which of the following is a binary
operation on Z.
i) a∗b = ba (ii) a∗b = a+b (iii) a∗b = (a+b)(a−b) (iv) a∗b = (ab)2 (v) a∗b = a+2b

b) which operations in (a) are commutative? Which ones are associative?

13. Let ∗ be a binary operation on R = (−∞,∞) de�ned as a ∗ b = a+ b− ab for a, b, c ∈ R.
i) Is * commutative? (ii) Calculate 4∗(0.5∗6) and (4∗0.5)∗6 (iii) Calculate 10∗(−10)

14. Let Z denote the set of all integers. De�ne an operation ∗ on Z by a ∗ b = a+ b− ab
a) show that ∗ is a binary operation on Z
b) determine whether ∗ is associative on Z
c) evaluate −3 ∗ 2 ∗ 5

15. Let N be the set of all natural numbers. De�ne an operation ∗ on N by a∗b = (a−b)2+2ab

a) show that ∗ is a binary operation on N
b) determine whether ∗ is associative on N
c) determine whether ∗ is commutative on N

16. Express z = (4−2i)(1−2i)
(1+2i)2

in the form x+ yi where x, y ∈ R

17. Express z = (4+22i
(1−2i)3 in the form x+ yi where x, y ∈ R

18. Let * be a binary operation on R = (−∞,∞) de�ned as a ∗ b = a+ b− ab for a, b, c ∈ R.
i) Is * commutative? ii) Calculate 4 ∗ (0.5 ∗ 6) and (4 ∗ 0.5) ∗ 6 (iii) Is * associative?

19. Let ∗ be a binary operation de�ned by a ∗ b = (a− b)2 + 2ab where a, b ∈ Z

(a) Determine whether ∗ is commutative on Z
(b) Compute 0 ∗ (1 ∗ 2) and (0 ∗ 1) ∗ 2
(c) Determine whether ∗ is associative on Z

20. Let ∗ be a binary operation de�ned by a ∗ b = 2ab − 1 where a, b ∈ R

(a) Determine whether ∗ is commutative on R
(b) Compute 0 ∗ (2

3
∗ 3) and (0 ∗ 2

3
) ∗ 3

(c) Determine whether ∗ is associative on R
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2

Relations and Functions

2.1. Introduction

We now study special type of sets called relations. The concept of a relation as a set, helps us
comprehend the very important topic of functions in mathematics. We start with some basic,
yet cardinal de�nitions.

2.1.1 Product Set

De�nition 2.1.1. Let X and Y be two non-empty sets. The cartesian product of the two sets,
X and Y , is denoted as X × Y and de�ned as

X × Y = {(x, y)|x ∈ X and y ∈ Y }

.

Here, (x, y) denotes an ordered pair, and x is called the �rst coordinate and y is the second
coordinate of the pair (x, y). The cartesian product of X and Y is also referred to as the
product set. As de�ned above, it is the collection of all ordered pairs (x, y) where the �rst
entry x is from set X and the second entry y, is from set Y . The following examples help us
to understand the cartesian product much better.

Example 2.1.1. Let X = {1, 2, 3} and Y = {3, 4}. Find the cartesian product from set X to
set Y .

Soln: Let X × Y denote the cartesian product from X to Y . Then we have

X × Y = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}

Note 2.1.1. In general, X × Y 6= Y × X. From our example , we see that Y × X =
{(3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)} which con�rms that X × Y 6= Y ×X.

Always remember that X × Y is a SET of ordered pairs.
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Example 2.1.2. Let A = [1, 4] and B = [3, 4] be two sets in R. Find the cartesian product
from set A to set B.

Soln: Let A×B denote the cartesian product from set A to set B. Then we have

A×B = {(x, y)|1 ≤ x ≤ 4, 3 ≤ y ≤ 4}

Example 2.1.3. Let X = (−∞,∞) and Y = [0, 1] be two sets in R. Find the cartesian
product from set X to set Y .

Soln: Let X × Y denote the cartesian product from set X to set Y . Then we have

X × Y = {(x, y)| −∞ < x <∞, 0 ≤ y ≤ 1}

Pictorial Representation of Product Set

We can use a pictorial representation to clearly show the cartesian product of two sets. The
example above can be represented as shown below

1 4

3

4

x

y

1
x

y
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Note 2.1.2. If X × Y is the cartesian product of X and Y and if (a, b) is in X × Y ,

• then a ∈ X and b ∈ Y .

• (a, b) simply means a is mapped to b

• if r is a relation from set X to set Y , then r is a subset of X × Y

• if (a, b) is one of the elements in r, we write (a, b) ∈ r

• also (a, b) ∈ r can be written as r(a) = b, which means �r maps x to y".

• r(a) = b is simply read as �r maps x to y".

2.2. Relations

The concept of the Cartesian Product of two sets is very important to the understanding of
relationships that may exist between any two or more sets. This in turn helps us understand
the concept of a function. We start our discussion of relations with the following de�nition of
a relation.

De�nition 2.2.1. Let X and Y be two non-empty sets. A relation denoted r, from X to Y is
a subset of the set X × Y .

From this de�nition, we see that any subset of the cartesian product X × Y , quali�es to be a
relation from X to Y . Since any set is a subset of itself, X × Y is also a relation from X to Y .

Example 2.2.1. Let A = {1, 2, 3} and B = {3, 4}. Further, let

r1 = {(1, 3), (1, 4), (3, 4)}, r2 = {(1, 3), (3, 3), (2, 4)}, r3 = {(1, 4)} and r4 = {(4, 3), (2, 4), (3, 3)}

Then we can see that r1 is a subset of the cartesian product A×B. Therefore, we say that r1,
is a relation from A to B.

Similarly, r2 and r3 are relations from A to B since each of them is a subset of A×B. However,
notice that r4 is not a subset of A×B. Hence, r4 is not a relation from A to B. Pictorially, we
can represent the above relations as:
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Example 2.2.2. Let A = [1, 3] and B = [3, 4] be two intervals in R. Further, de�ne

r = {(x, y)| 1 ≤ x ≤ 3, 3 ≤ y ≤ 4, y = 2x}

Then we see that r is a relation from set A to set B, since r is a subset of A×B

1 3

3

4

x

y

Example 2.2.3. Let X = (−∞,∞) and Y = (−∞,∞). The we see that

X × Y = {(x, y)| x ∈ R and y ∈ R}

Further, de�ne: r1 = {(x, y)| y = x+ 1, x, y ∈ R}, r2 = {(x, y)| y = x2, x, y ∈ R}.

r3 = {(x, y)| y =
√
x− 1, x, y ∈ R} and r4 = {(x, y)| y2 = x, x, y ∈ R}

Since r1, r2, r3 and r4 are all subsets of X × Y , they form relations from X to Y . See
the diagrams below and identify each relation

−1

1
x

y

x

y
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1

x

y

x

y

Example 2.2.4. Let X = (−∞,∞) and Y = [0,∞). Then the cartesian product is given as:

X × Y = {(x, y)| x ∈ R, y ≥ 0 and y ∈ R}

Further, de�ne: r1 = {(x, y)| y =
√
x, x, y ∈ R}, r2 = {(x, y)| y = |x− 2|, x, y ∈ R}.

r3 = {(x, y)| y = −
√
x+ 1, x, y ∈ R} and r4 = {(x, y)| y = x3, 1 < y ≤ 5, x, y ∈ R}

Since r1, and r2 are subsets of X × Y , they form relations from X to Y . However, note that
r3 and r4 are not subsets of X × Y . Hence, they are not relations from X to Y .

x

y

2

2

x

y

−1−1

x

y

x

y
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De�nition 2.2.2. Let X and Y be two non-empty sets. The domain of a relation r from X to
Y denoted Dr, is de�ned as

Dr = {x ∈ X| (x, y) ∈ r for some y ∈ Y }

De�nition 2.2.3. Let X and Y be two non-empty sets. The range of a relation r from X to
Y denoted Rr, is de�ned as

Rr = {y ∈ Y | (x, y) ∈ r for some x ∈ X}

Example 2.2.5. Let A = {1, 2, 3} and B = {3, 4}. Further, let

r1 = {(1, 3), (1, 4), (3, 4)}, r2 = {(1, 3), (3, 3), (2, 4)} and r3 = {(1, 4)}

a) Find the domain of:

(i) r1 (ii) r2 (iii) r3

b)Find the range of:

(i) r1 (ii) r2 (iii) r3

Soln: Exercise

2.2.1 Characteristics of Relations

1. We have looked at a number of relations. We now discuss some of the important charac-
teristics of these relations.

(a) One to One (1-1): A relation r from set A to set B is said to be one to one if
r(x1) = r(x2) implies that x1 = x2 for any points x1, x2 ∈ A.
This de�nition implies that a relation is one to one if no element is mapped to more
than one element. See the diagrams below;

−6 −4 −2 2 4 6

−4

−2

2

4

x

y
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Example 2.2.6. Let X = [1, 4] and Y = [0, 6] be two intervals in R. Further, let

r = {(x, y)| x ∈ X, y ∈ Y, y = x3} and g = {(x, y)| 1 ≤ x ≤ 4, 0 ≤ y ≤ 6, y = x2}

be two relations from X to Y . Show that r is one-one and that g is not one-one.

Soln: The sketch below shows that f is indeed one-one and g is not one-one. Note
that a relation is one-one if either a vertical or horizontal line cuts the graph of the
relation at exactly one point.

x

y

x

y

(b) One to Many A relation r from set A to set B is said to be one to many if a single
value x ∈ A may be mapped to more than one image in B. See the diagrams below

Example 2.2.7. Let X = (−∞,∞) and Y = (−∞,∞) be two intervals. Further,
let

r = {(x, y)| −∞ < x < 4, y ∈ Y, x = |y|} and g = {(x, y)| x ∈ R, −∞ < y <∞, y2+x2 = 1}

be two relations from X to Y . By means of a sketch, show that both r and g are
one to many relations from set X to set Y .

Soln: For a relation from set X to set Y to be one to many, a vertical line must cut
the graph of the relation at more than one point. See the graph below
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x

y

x

y

(c) Many to One: A relation r from set A to set B is said to be many to one if at
least two elements from set A can be mapped to a single element in set B.

Example 2.2.8. Let X = (−∞,∞) and Y = (−∞,∞) be two intervals. Further,
let

r = {(x, y)| x ∈ X, −∞ < y <∞, y = cosx} and g = {(x, y)| x ∈ X, y ∈ Y, y = x2}

be two relations from X to Y . Show that r is many-one and that g is not many-one.

Soln: The sketch below shows that r is indeed many-one and g is not many-one.
Note that a relation is many-one if a horizontal line cuts the graph of the relation
at more than one point.

x

y

x

y

(d) onto:A relation r from set A to set B is said to be onto if the entire A is mapped
to the entire B.
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We can also de�ne relations within a set. In other words, we can de�ne relations from one
element of a set to another element of the same set. Such a relation is simply a binary operation
de�ned on the same set.

De�nition 2.2.4. Let r be a binary relation on a set X. r is called a re�exive relation on X
if for all x ∈ X, (x, x) ∈ r

De�nition 2.2.5. Let r be a binary relation on a set X. r is called a symmetric relation on
X if for all x, y ∈ X, (x, y) ∈ r implies that (y, x) ∈ r

De�nition 2.2.6. Let r be a binary relation on a set X. r is called a transitive relation on X
if for all x, y, z ∈ X, (x, y) ∈ r and (x, y) ∈ r implies that (x, z) ∈ r

Example 2.2.9. Let X = {1, 2, 3} be a set of the �rst three natural numbers.

Then, a relation r1 = {(1, 1), (1, 2), (2, 2), (3, 3), (3, 2)} is re�exive on set X since all pairs of
the form (x, x) ∈ r1. That is, (1, 1) ∈ r1, (2, 2) ∈ r1 and (3, 3) ∈ r1.

The relation r2 = {(1, 1), (1, 2), (2, 1), (1, 3), (3, 1)} is symmetric on X since (x, y) ∈ r2 implies
that (y, x) ∈ r2. It is a two way path.

The relation r3 = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (1, 3)} is transitive on X since (x, y) ∈ r3
and (y, z) ∈ r3 implies that (x, z) ∈ r3.

Example 2.2.10. Determine whether the following relations are re�exive, transitive or sym-
metric on Y = {1, 2, 3, 4}

i) r = {(1, 2), (2, 1), (3, 1), (4, 2)}

ii) r = {(1, 1), (2, 1), (3, 1), (4, 2), (2, 2), (3, 4), (3, 3), (4, 4)}

iii) r = {(1, 2), (2, 3), (1, 3), (2, 1)}

iv) r = {(1, 1), (2, 2), (3, 4), (4, 3), (3, 3), (4, 4)}

Sol: Exercise

2.3. Functions

Before proceeding to this section, make sure you understand set theory, product set (Cartesian
product) as well as relations. Functions are simply relations between two sets, that satisfy
certain conditions. Since relations are just sets and functions are indeed relations, we can see
that functions are just special type of sets. Let us give some de�nitions

De�nition 2.3.1. Let X and Y be two non-empty sets. A relation f, from X to Y is called a
function if for every element x ∈ X, there exists a unique element y ∈ Y such that (x, y) ∈ f
i.e f(x) = y.
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Note 2.3.1. If f is a function from set X to set Y , then the following hold:

• f is a relation from set X to set Y

• (x, y) ∈ f means that f maps the input value x ∈ X to a unique output value y ∈ Y .
This is written as f(x) = y which we read as �f maps x to y".

• if (x, y1) ∈ f and (x, y2) ∈ f , then y1 = y2. This means that an element x from the
domain, can not be mapped to more than one element in the range.

• Every element in the domain of f must be mapped to a unique element in the range set
of f

Example 2.3.1. Let A = {1, 2, 3, 4} and B = {7, 9, 11}. De�ne the relations f1, f2, f3, f4, f5
and f6 as shown below. Determine which of these relations are functions

i) f1 = {(1, 7), (2, 7), (3, 7), (4, 7)}

ii) f2 = {(1, 7), (2, 11), (3, 11), (4, 11), (2, 9), (3, 9), (3, 7), (4, 9)}

iii) f3 = {(1, 7), (1, 9), (1, 11)}

iv) f4 = {(1, 11), (2, 9), (3, 7)}

iv) f5 = {(1, 11), (2, 9), (3, 11), (4, 9)}

iv) f6 = {(1, 7), (2, 9), (3, 11), (4, 7)}

Represent each relation using an arrow diagram

Sol: Exercise

2.3.1 General Characteristics of Functions

The following are the general characteristics of functions:

1. One to One (Injective): A function f : X −→ Y is one to one (1-1) if for any two
elements x1, x2 ∈ X, f(x1) = f(x2) implies x1 = x2. A one to one function is also called
an injective function. The graph of a one to one function cuts any horizontal line at
exactly one point.

Example 2.3.2. Show that the function f(x) = 2x− 7 is a one to one function.

Soln: Let x1, x2 ∈ Df such that f(x1) = f(x2). We need to show that x1 = x2. Thus,

f(x1) = f(x2)

2x1 − 7 = 2x2 − 7

2x1 = 2x2

x1 = x2

Hence, f is a 1-1 function since f(x1) = f(x2) implies that x1 = x2.
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Example 2.3.3. Show that the function f(x) = 3x2 − 4 is not a one to one function.

Soln: Let x1, x2 ∈ Df such that f(x1) = f(x2). We need to show that x1 6= x2. Thus,

f(x1) = f(x2)

3(x1)
2 − 4 = 3(x2)

2 − 4

3x21 = 3x22
x21 = x22

x21 − x22 = 0

(x1 − x2)(x1 + x2) = 0

This shows that either x1 = x2 or that x1 = −x2. Hence, f is not a 1-1 function since
f(x1) = f(x2) does not necessarily imply that x1 = x2. The graph of a 1-1 function does
not cut any horizontal line more than once.

2. Many to One: A function f : X −→ Y is said to be many to one if at least two elements
from set X can be mapped to a single element in set Y . The graph of a many to one
function may cut a horizontal line at more than one point.

3. Surjective (ONTO): A function f : X −→ Y is said to be surjective if the range of f
is the entire Y . A surjective function is also called an onto function.

4. INTO: A function f : X −→ Y is said to be an into function if the range of f is a proper
subset of Y .

5. Bijective (1-1 and ONTO): A function f : X −→ Y is said to be bijective if it is
both one to one and onto. Thus, bijective means that a function is both injective and
surjective.

6. Even: A function f : X −→ Y is said to be an even function if f(−x) = f(x) for all
elements x ∈ X.

Example 2.3.4. Show that the function f(x) = 3x2 + 11 is an even function. Sketch its
graph and comment.

Soln: Let x ∈ Df be an arbitrary element. Then

f(−x) =3(−x)2 + 11

=3(−1)2(x)2 + 11

=3(1)(x)2 + 11

=3x2 + 11

=f(x)
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The graph of an even function is symmetric about the y-axis.

7. Odd: A function f : X −→ Y is said to be an odd function if f(−x) = −f(x) for all
elements x ∈ X.

Example 2.3.5. Show that the function f(x) = 7x3 + 2x is an odd function. Sketch its
graph and comment.

Soln: Let x ∈ Df be an arbitrary element. Then

f(−x) =7(−x)3 + 2(−x)
=7(−1)3(x)3 + 2(−1)x
=7(−1)(−1)(−1)(x)3 − 2x

=− 7x3 − 2x

=− (7x3 + 2x)

=− f(x)

The graph of an odd function is symmetric about the origin. As an exercise, sketch the
graph of this function.

2.3.2 The Domain and Range of a Function

Recall that a function is a relation from one set to another set. Also recall that every relation
has a domain which is the set of all �rst entries of an ordered pair, and a range which is the
set of all second entries of an ordered pair. Let us discuss further the domain and range of a
function.

De�nition 2.3.2. Let f : X −→ Y be a function. The domain of f , denoted Df , is de�ned as

Df = {x| f(x) = y, for some unique y ∈ Y }

De�nition 2.3.3. Let f : X −→ Y be a function. The range of f , denoted Rf , is de�ned as

Rf = {y| y = f(x), for some x ∈ X}

36



NOTE:

• In certain situations, the function and the domain are given but the range is not given.
We will have to work out the range.

• If the function is given and the domain and range are not, we need to �nd the domain
and the range from R, by eliminating those real values that make the function unde�ned.
In other words, if the domain is not given, �rst assume that the whole of R is the domain.
secondly, from R, remove values which can not apply to the given function.

• The range is usually not given. We may work out the range by:

1. making x the subject of the formula and excluding values of y that can not apply to
the function.

2. sketching the graph of the function

3. inspection

Example 2.3.6. Given that f is a function de�ned as f(x) = 3x− 1 for any x ∈ Df and that
Df = {−2,−1, 0, 1, 2}, �nd the range of f .

Soln:

f(−2) =3(−2)− 1

=− 6− 1

=− 7

f(−1) =3(−1)− 1

=− 3− 1

=− 4

f(0) =3(0)− 1

=− 1

f(1) =3(1)− 1

=2

f(2) =3(2)− 1

=5

Hence, f maps: −2 to −7, −1 to −4, 0 to −1, 1 to 2 and 2 to 5

Therefore, Df = {−7,−4,−1, 2, 5}
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Example 2.3.7. Find the domain and the range for each of the following functions:

(i) f(x) = k where k ∈ R (ii) g(x) = −5 (iii) h(x) = 2x− 5 (iv) r(x) = 3
5
x− 1

Soln:

(i) For f(x) = k, we have

Df = {x| x ∈ R} since the function f is de�ned for all real numbers.

Rf = {k| k ∈ R}

(ii) For g(x) = −5, we have

Dg = {x| x ∈ R} since the function g is de�ned for all x ∈ R.

Rg = {−5} by inspection

(iii) For h(x) = 2x− 5 we have

Dh = {x| x ∈ R} since the function h is de�ned for all x ∈ R.

Rh : We can make x the subject;

y =2x− 5

2x =y + 5

x =
y + 5

2

Therefore, Rh = {y| y ∈ R} since y+5
2

is de�ned for all y ∈ R

(iv) For r(x) = 3
5
x− 1, we have

Dr = {x| x ∈ R} since the function r is de�ned for all real numbers.

Rh : We can make x the subject;

y =
3

5
x− 1

3

5
x =y + 1

x =
5y + 5

3

Therefore, Rr = {y| y ∈ R} since 5y+5
3

is de�ned for all y ∈ R

Example 2.3.8. Find the domain and the range for each of the following functions:

(i) f(x) = 1
x

(ii) g(x) = 3
x+1

(iii) h(x) = x−2
5x+1

(iv) r(x) = 1−2x
x+1

(v) s(x) = 1
x2+1

Soln:

(i) For f(x) = 1
x
, we have

Df = {x| x 6= 0, x ∈ R} since the function f is de�ned for all real numbers except 0.
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Rh : We can make x the subject;

y =
1

x
xy =1

x =
1

y

Therefore, Rf = {y| y 6= 0, y ∈ R} since 1
y
is de�ned for all y ∈ R provided y 6= 0

(ii) For g(x) = 3
x+1

, denominator must not be zero as division by zero is unde�ned. Thus

x+ 1 6= 0

x 6=− 1

Dg = {x| x 6= −1, x ∈ R} since 3
x+1

is de�ned for all real numbers except −1.

Rg : We make x the subject;

y =
3

x+ 1

y(x+ 1) =3

xy + y =3

xy =3− y

x =
3− y
y

Therefore, Rg = {y| y 6= 0, y ∈ R} since 3−y
y

is de�ned for all y ∈ R provided y 6= 0

(iii) For h(x) = x−2
5x+1

, denominator must not be zero as division by zero is unde�ned. Thus

5x+ 1 6= 0

5x 6=− 1

x 6=− 1

5

Dh = {x| x 6= −1
5
, x ∈ R} since x−2

5x+1
is de�ned for all real numbers except −1

5
.

R: We make x the subject;

y =
x− 2

5x+ 1

y(5x+ 1) =x− 2

5xy + y =x− 2

x− 5xy =y + 2

x(1− 5y) =y + 2

x =
y + 2

1− 5y
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Therefore, Rh = {y| y 6= 1
5
, y ∈ R} since y+2

1−5y is de�ned for all y ∈ R provided y 6= 1
5

(iv) For r(x) = 1−2x
x+1

, denominator must not be zero as division by zero is unde�ned. Thus

x+ 1 6= 0

x 6=− 1

Dr = {x| x 6= −1, x ∈ R} since 1−2x
x+1

is de�ned for all real numbers except −1.

Rr : We make x the subject;

y =
1− 2x

x+ 1

y(x+ 1) =1− 2x

xy + 2x =1− y
x(y + 2) =1− y

x =
1− y
y + 2

Therefore, Rr = {y| y 6= −2, y ∈ R} since 1−y
y+2

is de�ned for all y ∈ R provided y 6= −2

(v) For s(x) = 1
x2+1

, denominator can not be zero for any real number x. We see that,

x2 + 1 > 0

for all real values x ∈ R. whether x is negative, positive or zero, 1
x2+1

makes sense. Hence,

Ds ={x| x ∈ R}
=(−∞,∞)

since 1
x2+1

is de�ned for all real numbers.

Rs : We make x the subject;

y =
1

x2 + 1

y(x2 + 1) =1

x2y + y =1

x2y =1− y

x2 =
1− y
y

x =±
√

1− y
y

Three cases arise here

• y 6= 0
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• 1− y ≥ 0 implying that y ≤ 1

• y > 0

Therefore, Rs = {y| 0 < y ≤ 1, y ∈ R} since ±
√

1−y
y

is de�ned for all y ∈ (0, 1].

Example 2.3.9. Find the domain and the range for each of the following functions:

(i) f(x) =
√
x+ 1 (ii) g(x) =

√
−x− 1 (iii) h(x) =

√
2x+ 7 (v) r(x) =

√
x−3√
4−x

Soln:

(i) For f(x) =
√
x+ 1, we need x+ 1 ≥ 0 as the square root of a negative number is not

real. Hence;

x+ 1 ≥0
x ≥− 1

Df = {x| x ≥ −1, x ∈ R} since f(x) is de�ned for all real numbers in the interval [−1,∞).

Rf : The range for this function can be determined as follows;

y =
√
x+ 1

y2 =x+ 1

x =y2 − 1

Therefore, Rf = {y| y ≥ 0 y ∈ R} = [0,∞) since y2 − 1 is de�ned for all y ∈ [0,∞)

ii) For g(x) =
√
−x− 1, we need −x−1 ≥ 0 as the square root of negative numbers is not

real. Hence;

−x− 1 ≥0
x+ 1 ≤0

x ≤− 1

Dg = {x| x ≤ −1, x ∈ R} = (−∞,−1] since g(x) is de�ned for all real numbers in the
interval (−∞,−1].

Rg : The range for this function can be determined as follows;

y =
√
−x− 1

y2 =− x− 1

x =− y2 − 1

Therefore, Rg = {y| y ≥ 0 y ∈ R} = [0,∞) since − y2 − 1 is de�ned for all y ∈ [0,∞)
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iii) For h(x) =
√
2x+ 7 we need 2x+ 7 ≥ 0 as the square root of negative numbers is not

real. Hence;

2x+ 7 ≥0
2x+ ≥− 7

x ≥−7
2

Dh = {x| x ≥ −7
2
, x ∈ R} since h(x) is de�ned for all real numbers in the interval [−7

2
,∞).

Similarly, we see that, Rh = {y| y ≥ 0 y ∈ R} = [0,∞)

iv) For r(x) =
√
x−3√
4−x , we need x− 3 ≥ 0 for the numerator, and 4− x > 0 for the denominator.

Hence we have
x ≥ 3 and x < 4

.

Therefore, Dr = {x| 3 ≤ x < 4, x ∈ R} = [3, 4) since r(x) is de�ned only for all x ∈ [3, 4).

Similarly, we see that, Rr = {y| y ≥ 0 y ∈ R} = [0,∞)

Example 2.3.10. Let g(x) =

{
1− 2x if x ≤ −1;
x2 − 2 if x > −1.

a) Find: i) g(−3) ii) g(−1) iii) g(1) b) Find the values of a for which g(a) = 14.

Sol: a) This function has a partitioned domain at x = −1

i) Since −3 < −1, we use g(x) = 1− 2x so that we have g(−3) = 1− 2(−3) = 7

ii) Similarly, g(−1) = 1− 3(−1) = 4

iii) Since 1 > −1, we use g(x) = x2 − 2 so that g(1) = (1)2 − 2 = −1

b) From g(x) = 1 − 2x, we have 1 − 2a = 14 =⇒ a = −13
2
. From g(x) = x2 − 2, we have

a2− 2 = 14 =⇒ x2 = 16 =⇒ x = ±4. we discard −4 since −4 < −1 and say x = 4. Hence, the
required values of a are −13

2
and x = 4.

2.3.3 Composite Functions

De�nition 2.3.4. Let f and g be functions. The composition of f with g, denoted by fog is
given by (fog)(x) = f [g(x)]. Similarly, the composition of g with f denoted by gof is given as
(gof)(x) = g[f(x)]

Note that in general, (fog)(x) 6= (gof)(x).

Example 2.3.11. Given that f(x) = 1
2x−1 and g(x) = x+ 3, �nd:

(i) (fog)(x) (ii) (gof)(x)
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Soln:

(i)

(fog)(x) =f [g(x)]

=
1

2[g(x)]− 1

=
1

2[x+ 3]− 1

=
1

2x+ 2

(ii)

(gof)(x) =g[f(x)]

=[f(x)] + 3

=[
1

2x− 1
] + 3

=
1

2x− 1
+ 3

=
1 + 3(2x− 1)

2x− 1

=
6x− 2

2x− 1

Example 2.3.12. Given that f(x) =
√
2− x and g(x) = 2

x+1
, �nd:

(i) the domain of (gof)(x) (ii) (gof)(−3) (iii) (gof)(2) (iv) (gof)(0)

Soln:

(i) We �rst �nd the composition (gof)(x) as we did above.

(gof)(x) =g[f(x)]

=
2

[f(x)] + 1

=
2

[
√
2− x] + 1

=
2√

2− x+ 1

=
2√

2− x+ 1

For the domain, we need 2− x ≥ 0 implying that x ≤ 2. Hence domain, Dgof = (−∞, 2]

(ii) Simply substitute x for −3.
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(gof)(−3) = 2√
2− (−3) + 1

=
2√
5 + 1

(iii) Similarly,

(gof)(−2) = 2√
2− (2) + 1

=
2√
0 + 1

=2

(iv) Similarly,

(gof)(k) =
2√

2− (k) + 1

=
2√

2− k + 1

2.3.4 Inverse Functions

De�nition 2.3.5. Let f : X 7→ Y be a bijective function from set X to set Y . An inverse
function of f denoted f−1 is another function that maps elements from Y to X.

Note that both f and f−1 must be bijective. The graphs of the two functions f and f−1 are
symmetric about the line y = x

Example 2.3.13. Find the inverse of each of the following functions:

(i) f(x) = x+ 1 (ii) g(x) = 1
2x−1 (iii) h(x) =

√
−1− x

Soln:

(i) To �nd the inverse of a function, it is customary to make x the subject of the
formula

y =f(x)

y =x+ 1

x =y − 1

Therefore, f−1(x) = x− 1 is the inverse function of f(x) = x+ 1
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(ii) Similarly,

y =g(x)

y =
1

2x− 1

(2x− 1)y =1

2xy =1 + y

x =
1 + y

2y

Therefore, g−1(x) = 1+x
2x

is the inverse function of g(x) = 1
2x−1

(iii) Similarly

y =h(x)

y =
√
−1− x

y2 =− 1− x
x =− 1− y2

Therefore, h−1(x) = x− 1 is the inverse function of h(x) = x+ 1

Example 2.3.14. Given the function f(x) = 4
3x+2

and g(x) = 2x − 3, �nd (g ◦ f)−1(x) and
state its domain.

Sol:

(g ◦ f)(x) =g[f(x)]
=2[f(x)]− 3

=2

[
4

3x+ 2

]
− 3

=
8− 3(3x+ 2)

3x+ 2

=
2− 9x

3x+ 2
make x the subject to get (g ◦ f)−1

y =
2− 9x

3x+ 2

y(3x+ 2) =2− 9x

3xy + 9x =2− 2y

x(3y − 9) =2− 2y

x =
2− 2y

3y − 9
Hence, (g ◦ f)−1(x) = 2− 2x

3x− 9

For the domain, we need 3x− 9 6= 0 =⇒ x 6= 3. Hence, D(g◦f)−1 = {x| x 6= 3, x ∈ R}
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3

Linear Functions

3.1. Introduction

We have looked at functions in general. We now turn our attention to a speci�c type of functions
called the linear functions. These are some of the most basic functions, yet very useful. They
are used extensively in applied science to show the relationship between two quantities that are
linearly related.

De�nition 3.1.1. A linear function in the variable x with real constants m and c, is a function
of the form

f(x) = mx+ c

Example 3.1.1. The following are some examples of linear functions;

i) f(x) = 2x+ 7 ii) g(x) = x iii) h(x) = 2− 5x iv) k(x) = 3
11
x− 1

3.2. Graphs of Linear Functions

The term linear functions implies that the graph of any Linear function is a straight line.
Quite often, the domain and the range will comprise of all real numbers unless some speci�c
restrictions are imposed on the function. If f(x) = mx + c is a linear function, the graph
of this function, denoted y = mx + c is a straight line whose gradient or slope is m and the
Y−intercept is c. We will examine various techniques for sketching the graphs of these linear
functions.

Example 3.2.1. Sketch the graph of f(x) = x. Hence, state the domain and the range of this
function.

Sol: The graph of this function passes through all points such that y = x. Hence,
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1
x

y

From the graph, we can see that

Df = {x| x ∈ R} = (−∞,∞) and Rf = {y| y ∈ R} = (−∞,∞)

Example 3.2.2. Sketch the graph of f(x) = −x. Hence, state the domain and the range for
this function.

Sol: Exercise

Example 3.2.3. Given the function f(x) = 2x + 1, sketch the graph. Hence or otherwise,
state the domain and the range for this function.

Sol: The graph of this function is given by y = 2x + 1. Further, to sketch the graph of any
linear function, we just need two points through which the graph passes.

when x = 0, then y = 2(0) + 1 = 1. Hence, the graph passes through the point (0, 1)

when y = 0, then 0 = 2x+ 1 =⇒ x = −1
2
. Hence, the graph passes through the point (−1

2
, 0)

1
x

y

From the graph, we can see that

Df = {x| x ∈ R} = (−∞,∞) and Rf = {y| y ∈ R} = (−∞,∞)
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Example 3.2.4. Sketch the graph of f(x) = 7 − 3x. Hence, state the domain and the range
for this function.

Sol: Exercise

Example 3.2.5. Given the function f(x) = −2, sketch the graph. Hence or otherwise, state
the domain and the range for this function.

Sol: Note that this is just a straight line through (x,−2) for all values of x and is parallel to
the X−axis.

−2

2

x

y

we can see that
Df = {x| x ∈ R} = (−∞,∞) and Rf = {−2}

Note 3.2.1. The following points apply to lines that are either parallel to the X−axis or
parallel to the Y−axis.

• The graph of a line y = k, where k ∈ R is parallel to the X−axis. It represents the graph
of a many to one function, f(x) = k. It has a gradient of zero.

• The graph of a line x = k, where k ∈ R is parallel to the Y−axis. It is NOT a graph of
a function. The gradient is unde�ned.

Example 3.2.6. Sketch the graphs of the following relations, on the same axes.

i) y = 7
2

ii) y = −5 iii) x = −5
2

iv) x = 1 v) 2x− 5y = 11

Sol: Exercise
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3.2.1 Gradient of a Straight Line

The gradient of straight line is a measure of the steepness of that line relative to the X−axis.

De�nition 3.2.1. The gradient m, of a straight line L, that passes through two points (x1, y1)
and (x2, y2) is given as

m =
y2 − y1
x2 − x1

Example 3.2.7. Find the gradient of a straight line through the points (−5, 3) and (4, 7)

Sol: Let (x1, y1) = (−5, 3) and (x2, y2) = (4, 7). Then m = y2−y1
x2−x1 = 7−3

4−(−5) =
4
9

Example 3.2.8. Find the gradient of the line through the points:

i) (−2,−3) and (3, 5) ii) (−2, 5) and (4,−2) iii) (2,−3) and (2, 11) iv) (−3,−1) and (7,−1)

Sol: Exercise

Note 3.2.2. We take note of the following:

• Parallel lines have equal gradients. Conversely, if two lines have equal gradients, then
they are parallel

• If m1 and m2 are the gradients of two parallel lines, then m1m2 = −1

• Lines parallel to the X−axis have gradients equal to zero

• Lines parallel to the Y−axis have unde�ned gradients.

3.2.2 Equation of a Straight Line

We can determine the equation of a straight line using the concept of the gradient. The equation
of a strait line can be determined depending on the presented information:

a) Given one point p(x1, y1) on the line and its gradient m: Choosing an arbitrary point
(x, y) on the line, we can show that the equation is given by

y − y1 = m(x− x1)

b) Given two points A(x1, y1) and B(x2, y2) on the line: Choosing an arbitrary point (x, y)
on this line and using the concept of a straight line, we can show that the equation of the line
is given by

y − y1
y2 − y1

=
x− x1
x2 − x1
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Example 3.2.9. Determine the equation of the line through the point (1,−1) with gradient
1
3
. Sketch the graph of this line.

Sol: Let (x1, y1) = (1,−1) and m = 1
3
. Then using y − y1 = m(x− x1), we have

y − (−1) = 1
3
(x− 1) =⇒ 3y + 3 = x− 1 which simpli�es to 3y = x− 4

To sketch the graph we need to know the intercepts. Thus;

Verify that the graph passes through the point (0,−4
3
) and (4, 0)

4

x

y

Example 3.2.10. Determine the equation of the line through (2,−3) and (−1, 4). Hence or
otherwise, sketch the graph of this line.

Sol: Let (x1, y1) = (2,−3) and (x2, y2) = (−1, 4). Then, using y−y1
y2−y1 = x−x1

x2−x1 , we have

y−(−3)
4−(−3) =

x−2
−1−2 =⇒ y+3

7
= x−2
−3 which simpli�es to 3y + 7x = 5. The sketch is shown below.

x

y

From the graphs above we can see that the domain of a linear function is R and the range is
the same, R
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3.3. Equations and Inequalities

We now look at some basic equations and inequalities involving linear terms.

Example 3.3.1. Solve the equation −2x+ 7 = x− 11

Sol: Collect like terms. −2x+ 7 = x− 11 =⇒ −3x = −18 =⇒ x = 6. Hence,

SS = {6}

Example 3.3.2. Solve the inequality −x− 3 ≥ 2x+ 7

Sol: Collect like terms. −x− 3 ≥ 2x+ 7 =⇒ −3x ≥ 10 =⇒ x ≤ −10
3
. Hence, the solution set

is given by;

SS =

{
x| x ≤ −10

3

}
=

(
−∞,−10

3

]

Example 3.3.3. Solve the following pair of simultaneous equations

2x+ 3y = −1 (i)

x(x− y) = 2 (ii)

Sol: Use substitution.

From (i), we have y = −1−2x
3

. Substituting this into equation (ii), we have

x(x− −1−2x
3

) = 2 so that x(5x+1
3

) = 2, which simpli�es to a quadratic equation 5x2+x− 6 = 0.

5x2 + x− 6 = 0 =⇒ (5x+ 6)(x− 1) = 0. This gives x = −6
5
and x = 1

When x = −6
5
, from (i), we get y =

−1−2(− 6
5
)

3
= 7

15

When x = 1, from (i), we get −1−2(1)
3

= −1

Hence, x = −6
5
when y = 7

15
and x = 1 when y = −1

Example 3.3.4. Find the coordinates of the points where the line x+2y = 7 meets the curve
x2 − 4x+ y2 = 1

Sol: We solve the two equations simultaneously.

x+ 2y = 7 (i)

x2 − 4x+ y2 = 1 (ii)

From (i), we have x = 7− 2y. Substituting for x in (ii), we have

(7− 2y)2 − 4(7− 2y) + y2 = 1 so that 49− 28y + 4y2 − 28 + 8y + y2 − 1 = 0.

This reduces to a quadratic y2 − 4y + 4 = 0 =⇒ (x− 2)2 = 0. This gives x = 2

From (i), x = 7− 2(2) = 3.

Therefore, the line and the curve meet at the point (2, 3)
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Example 3.3.5. Solve the following system of linear equations

x+ 2y − 3z = 12 (i)

3x− y − 2z = 1 (ii)

2x+ 5y + 4z = 18 (iii)

Sol: For now, we will use substitution.

From (i), we have x = 12 + 3z − 2y substituting this for x in (ii) and (iii), we have

3(12 + 3z − 2y)− y − 2z = 1 which simpli�es to z − y = −5. Similarly,

2(12 + 3z − 2y) + 5y + 4z = 18 which simpli�es to 10z + y = −6. We now solve the following
simultaneously.

z − y = −5 (iv)

10z + y = −6 (v)

From (iv), we have z = y − 5 and substituting this into (v) gives 10(y − 5) + y = −6 so that
we have 11y = 44 =⇒ y = 4.

Now we can use (iv), i.e z − 4 = −5 =⇒ z = −1. Further, using (i), we have

x = 12 + 3z − 2y =⇒ x = 12 + 3(−1)− 2(4) = 1

Therefore, x = 1, y = 4 and z = −1. The solution set,

SS = {(1, 4,−1)}

Example 3.3.6. Solve the following system of linear equations

21x+ 35y − 7z = −125 (i)

7x+ 7y + 7z = −8 (ii)

2x− 2y + 7z = 21 (iii)

Example 3.3.7. Solve the following system of linear equations

2x− 3y + z = −10 (i)

3x+ 7y − 2z = 8 (ii)

6x+ 5y − 4z = −1 (iii)

Example 3.3.8. Solve the following system of linear equations

2x+ 5y − 4z = 2 (i)

3x+ 7y − 8z = 0 (ii)

12z − 13y + 2x = 4 (iii)

Sol: Exercise
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4

Quadratic Functions

4.1. Introduction

We now study one of the most important functions in mathematics, the quadratic function.
It is a polynomial of degree two. This function is used to model a wide variety of random
phenomenon. Its applications ranges from the �elds of economics, social sciences and natural
sciences.

De�nition 4.1.1. A quadratic function in x variable, with real constants a, b and c, is a
function of the form

f(x) = ax2 + bx+ c

Note:

• when c = 0, then we have f(x) = ax2 + bx, which is still a quadratic function.

• when c = 0 and b = 0 then we have f(x) = ax2, which is also still a quadratic function.

• when a = 0 the its no longer a quadratic function.

De�nition 4.1.2. An equation of the form ax2 + bx + c = 0 is called a quadratic equation in
terms of the random variable x.

We should distinguish the quadratic function f(x) = ax2 + bx and the quadratic equation
ax2+ bx+ c = 0. Before we study the quadratic function further, we need to explore some nice
features of the quadratic equation.

4.2. Roots of a Quadratic Equation

The values of x which satisfy the quadratic equation ax2 + bx + c = 0 are called roots of the
quadratic equation. The roots are also referred to as the solutions or zeros of the quadratic
equation. Roots maybe real numbers or indeed complex numbers. The concept of roots is
vital to the understanding of the quadratic function. To determine the roots of the quadratic
equation, we need to solve the equation ax2 + bx + c = 0. Thus, it is very important that we
develop that necessary skill of solving quadratic equations
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Methods of Solving Quadratic Equations

We will consider three methods of solving the quadratic equation. Note that when we are
solving the quadratic equation ax2 + bx+ c = 0, we are simply �nding its roots.

1. Factorisation:

This is arguably the simplest method when the roots are rational. The following steps
are involved:

i) obtain the product: P = ac

ii) obtain the sum: S = b

iii) �nd two factors whose product P = ac and whose sum is S = b.

iv) substitute b from the quadratic equation with the two numbers, then factorise.

Example 4.2.1. Use the factorization method to solve the following quadratic equations:

(i) 2x2+7x−15 = 0 (ii)−5x2−3x+2 = 0 (iii) x2−x−2 = 0 (iv) 5x2−6x−2 = 0

Soln:

(i) For 2x2 + 7x− 15 = 0, we have a = 2, b = 7, c = −15.
P : ac = (2)(−15) = −30
S : b = 7.

factors: +10 and −3
We now factorise as follows:

2x2 + 7x− 15 =0

2x2 + 10x− 3x− 15 =0

2x(x+ 5)− 3x(x+ 5) =0

(2x− 3)(x+ 5) =0

So either (2x− 3) = 0 or (x+ 5) = 0 implying that either x = 3
2
or x = −5

(ii) For −5x2 − 3x+ 2 = 0, we have a = −5, b = −3, c = 2.

P : ac = −10
S : b = −3.

factors: −5 and 2

−5x2 − 3x+ 2 =0

−5x2 − 5x+ 2x+ 2 =0

−5x(x+ 1) + 2(x+ 1) =0

(−5x+ 2)(x+ 1) =0

So either (−5x+ 2) = 0 or (x+ 1) = 0.

Therefore, x = 2
5
or x = −1
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(iii) For x2 − x− 2 = 0, we have a = 1, b = −1, c = −2.
P : ac = −2
S : b = −1.

factors: 1 and −2

x2 − x− 2 =0

x2 + x− 2x− 2 =0

x(x+ 1)− 2(x+ 1) =0

(x− 2)(x+ 1) =0

So either (x− 2) = 0 or (x+ 1) = 0 implying that either x = 2 or x = −1
Hence the roots are x = 2 and x = −1

(iv) For 5x2−6x−2 = 0, the factorization can not work (Verify). This is because the
roots are not rational numbers. In parts (i)-(iii) of our example we see that all obtained
roots were rational.

2. Completing the Square:

This is a more general approach of solving quadratic equations. It can be used whether
the roots are real or complex.The following steps are involved:

i) write the terms with the unknown variable on one side.

ii) divide through by the coe�cient of x2

iii) add the square of half the coe�cient of x

iv) factorise the side with the variables and then solve

Example 4.2.2. Given ax2 + bx+ c = 0, complete the square.

Soln:

ax2 + bx+ c =0

x2 +
b

a
x+

c

a
=0

x2 +
b

a
x =− c

a

x2 +
b

a
x+

(
b

2a

)2

=− c

a
+

(
b

2a

)2

(
x+

b

2a

)2

=
b2 − 4ac

4a2

Example 4.2.3. Given 2x2 + 7x+ 5 = 0, complete the square.
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Soln:

2x2 + 7x+ 5 =0

x2 +
7

2
x+

5

2
=0

x2 +
7

2
x =− 5

2

x2 +
7

2
x+

(
7

4

)2

=− 5

2
+

(
7

4

)2

(
x+

7

4

)2

=
9

16

Example 4.2.4. By completing the square, solve the quadratic equation 5x2−6x−2 = 0.

Soln:

5x2 − 6x− 2 =0

5x2 − 6x =2

x2 − 6

5
x =

2

5

x2 − 6

5
x+

(
−3

5

)2

=
2

5
+

(
−3

5

)2

(
x− 3

5

)2

=
19

25

x− 3

5
=±

√
19

25

x =
3

5
±
√

19

25

Hence, x = 3+
√
19

5
or x = 3−

√
19

5

Example 4.2.5. Given 9− 2x− 5x2 = 0, complete the square. Hence, �nd the roots of
the quadratic equation.

Soln:Exercise

3. Quadratic Formula

This formula is just a consequence of the method of completing the square. If f(x) =
ax2 + bx+ c, by completing the square, we get:
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ax2 + bx+ c =0

x2 +
b

a
x+

c

a
=0

x2 +
b

a
x =− c

a

x2 +
b

a
x+

(
b

2a

)2

=− c

a
+

(
b

2a

)2

(
x+

b

2a

)2

=
b2 − 4ac

4a2

x+
b

2a
=±

√
b2 − 4ac

4a2

x =− b

2a
±
√
b2 − 4ac

4a2

x =− b

2a
±
√
b2 − 4ac

2a

x =
−b±

√
b2 − 4ac

2a

Hence for any quadratic f(x) = ax2 + bx+ c, the quadratic formula

x =
−b±

√
b2 − 4ac

2a

can be used to determine the roots

Example 4.2.6. Solve the equation 3x2 − 7x− 11 = 0

Soln: a = 3, b = −7 and c = −11. Using the formula, we have;

x =
−b±

√
b2 − 4ac

2a

=
−(−7)±

√
(−7)2 − 4(3)(−11)
2(3)

=
7±
√
49 + 132

2(3)

=
7±
√
181

6

Hence, x = 7+
√
181

6
or x = 7−

√
181

6

4.2.1 Nature of Roots and The Discriminant

We now turn to our attention to the nature of the roots of a quadratic equation.
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De�nition 4.2.1. The discriminant D of a quadratic equation ax2 + bx+ c = 0 is given by

D = b2 − 4ac

The concept of a discriminant is very important to the understanding of the nature of roots.
There are basically three types of roots, depending on the discriminant.

1. If the discriminant is positive, i.e b2−4ac > 0, then the quadratic equation ax2+bx+c = 0
has two distinct real roots.

2. If the discriminant is zero, i.e b2 − 4ac = 0, then the quadratic equation ax2 + bx+ c = 0
has two equal real roots. Having two equal roots is the same as having only one root.

3. If the discriminant is negative, i.e b2−4ac < 0, then the quadratic equation ax2+bx+c = 0
has no real roots. It has complex roots

Example 4.2.7. Determine the nature of the roots of the equation 4x2 − 7x+ 3 = 0

Sol: a = 4, b = −7 and c = 3

Then b2 − 4ac = (−7)2 − 4(4)(3) = 1 > 0.

Since b2 − 4ac > 0, the equation 4x2 − 7x+ 3 = 0 has two distinct real roots.

Example 4.2.8. Determine the nature of the roots of the equation x2 + 6x+ 9 = 0

Sol: a = 1, b = 6 and c = 9

Then b2 − 4ac = (6)2 − 4(1)(9) = 0.

Since b2 − 4ac = 0, the equation x6x+ 9 = 0 has two equal real roots.(one root)

Example 4.2.9. Determine the nature of the roots of the equation 5x2 − x+ 9 = 0

Sol: a = 5, b = −1 and c = 9

Then b2 − 4ac = (−1)2 − 4(5)(9) = −179 < 0.

Since b2 − 4ac < 0, the equation 5x2 − x+ 9 = 0 has no real roots. (it has complex roots)

Example 4.2.10. For what values of k does the equation 4x2 + kx+ 9 = 0 have equal roots?

Sol: a = 4, b = k and c = 9. For equal roots, we need b2 − 4ac = 0

Hence,

b2 − 4ac =0

(k)2 − 4(4)(9) =0

k2 − 144 =0

(k + 12)(k − 12) =0

Hence, k = −12 and k = 12
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4.2.2 Sum and Product of the Roots

Let α and β be the roots of the quadratic ax2 + bx + c = 0. We will examine the relationship
that exists between the roots and the coe�cients. Since α and β are roots of the quadratic
ax2 + bx+ c = 0, we can assume that

α =
−b+

√
b2 − 4ac

2a
and β =

−b−
√
b2 − 4ac

2a

Now, for ax2 + bx+ c = 0, we can divide through by a to get;

x2 + b
a
x+ c

a
= 0�������������������������������(i)

Also, since Since α and β are roots of the quadratic ax2 + bx+ c = 0, we can write

(x−α)(x−β) = 0��������������������������������-(ii)

equating (i) and (ii), we get

x2 +
b

a
x+

c

a
= (x− α)(x− β)

.

x2 +
b

a
x+

c

a
= x2 − (α + β)x+ αβ

Comparing the terms, we get

α + β = − b
a

and
αβ =

c

a

which denote the sum and the product of the roots of the quadratic equation respectively.

Example 4.2.11. Find the sum and the product of the roots of 2x2 − 3x+ 1 = 0

Sol: a = 2, b = −3 and c = 1.

Let α and β be the roots of 2x2 − 3x+ 1 = 0.

Then α + β = − b
a
= − (−3)

2
= 3

2

and αβ = c
a
= 1

2

Some Important Identities:

• α3 − β3 = (α− β)(α2 + αβ + β2)

• α3 + β3 = (α + β)(α2 − αβ + β2)

• α2 − β2 = (α− β)(α + β)

Example 4.2.12. If the roots of the quadratic 3x2− 5x+1 = 0 are α and β, �nd the value of

i) α2 + β2 ii) 1
α
+ 1

β
iii) α3 + β3

59



Sol: a = 3, b = −5 and c = 1.

We have α + β = − b
a
= − (−5)

3
= 5

3
and αβ = c

a
= 1

3

Therefore, (i)

α2 + β2 =(α + β)2 − 2αβ

=

(
5

3

)2

− 2

(
1

3

)
=
25

9
− 2

3

=
19

9

(ii)

1

α
+

1

β
=
β + α

αβ

=
5
3
1
3

=
5

3
× 3

1
=5

(iii)

α3 + β3 =(α + β)(α2 + β2 − 2αβ)

=

(
5

3

)(
19

9
− 1

3

)
=
5

3
× 16

9

=
80

27

Example 4.2.13. The roots of x2 − 2x + 3 = 0 are α and β. Find the equation whose roots
are α + 2 and β + 2

Sol: Exercise

Example 4.2.14. Find the value of k if the roots of 3x2 + 5x− k = 0 di�er by 2.

Sol: Exercise
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4.3. Graphs of Quadratic Functions

Let f(x) = x2 + bx+ c be any quadratic function. The graph y = x2 + bx+ c of any quadratic
function is a parabola. If a > 0, the parabola opens upwards (cup-shaped). If a < 0, the
parabola opens downwards (cap-shaped). To sketch the graph of a quadratic function, the
following must be determined:

• orientation: To determine the orientation of the parabola, the constant a is used. If
a > 0, the parabola opens upwards (cup-shaped). If a < 0, the parabola opens downwards
(cap-shaped).

• y-intercept: To determine the Y−intercept, we let x = 0 and evaluate the corresponding
y value. It is easy to see that the graph cuts the Y−axis at the point (0, c).

• turning point: The turning point occurs when x = − b
2a
, i.e at the point

(
− b

2a
, 4ac−b

2

4a

)
• x-intercept: To determine theX−intercept, we let y = 0 and evaluate the corresponding
x value(s). This simply means we solve the equation x2 + bx+ c = 0 to obtain the roots.
The graph cuts the X−axis at the points α and β, where α and β are just the usual roots
we have discussed.

• Sketch: Once the above quantities are determined, we are ready to sketch the graph
y = x2 + bx+ c.

Example 4.3.1. Sketch the graph of f(x) = 2x2 − 7x+ 5

Sol: a = 2, b = −7 and c = 5.

i) Since a > 0, the orientation of the graph is cup-shaped, i.e it opens upwards.

ii) f(0) = 2(0)2 − 7(0) + 5 = 5. Hence, the graph cuts the y−axis at (0, 5).

iii) The turning point occurs at
(
− b

2a
, 4ac−b

2

4a

)
=
(
− (−7)

2(2)
, 4(2)(5)−(−7)

2

4(2)

)
=
(
7
4
,−9

8

)
iv) 2x2 − 7x + 5 = 0 =⇒ (x − 1)(2x − 5) = 0 =⇒ x = 1 and x = 5

2
. Hence α = 1 and β = 5

2

are the roots. This means that the graph cuts the x−axis at (1, 0) and
(
5
2
, 0
)
We have what

we need to sketch the graph of the quadratic function f(x) = 2x2 − 7x+ 5. See below

x

y
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4.3.1 Discriminant and The Graph of a Quadratic Function

Let us examine the relationship between the discriminant and the graph of f(x) = x2 + bx+ c.
Using the discriminant b2 − 4ac and the value of a, the graph of a quadratic falls into three
categories, shown below.

x

y

x

y

x

y

x

y

x

y

x

y
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4.3.2 Maximum and Minimum Values of a Quadratic Function

Let f(x) = x2 + bx+ c be a quadratic function. If a < 0, the quadratic has a maximum point.
If a > 0 the quadratic has a minimum point. We need to determine the coordinates of the
Minimum/Maximum points. To do this, recall the concept of completing the square:

Completing the square for a quadratic function f(x) = x2+bx+c yields the following important
result

f(x) =ax2 + bx+ c

=a

(
x2 +

b

a

)
+ c

=a

(
x+

b

2a

)2

−
(
b

2a

)2

+ c

=a

(
x+

b

2a

)2

+
4ac− b2

4a

Minimum Value

The graph below shows the minimum point of a quadratic curve.

x

y

This occurs when a > 0. Further, from the results of completing the square, we see that;

• the value x = − b
2a

attains the minimum value for the quadratic function

• the minimum value for the quadratic function is f
(
− b

2a

)
= 4ac−b2

4a

• hence, the minimum point is
(
− b

2a
, 4ac−b

2

4a

)
• the range of f(x) is [4ac−b

2

4a
,∞)
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Maximum Value

The graph below shows the maximum point of a quadratic curve.

x

y

This occurs when a < 0. Further, form the results of completing the square, we see that;

• the value x = − b
2a

attains the maximum value for the quadratic function

• the maximum value for the quadratic function is f
(
− b

2a

)
= 4ac−b2

4a

• hence, the maximum point is
(
− b

2a
, 4ac−b

2

4a

)
• the range of f(x) is (−∞, 4ac−b2

4a
]

Example 4.3.2. Complete the square of the quadratic function f(x) = 2x2−10x+22. Hence,
�nd the maximum/minimum value of f(x) and the value of x at which it occurs, and sketch
the graph.

Sol: a = 2, b = −10 and c = 22. Since we have a > 0, we have a minimum.

f(x) =2x2 − 10x+ 22

=2

(
x2 − 10

2

)
+ 22

=2
(
x2 − 5

)
+ 22

=2

(
x− 5

2

)2

− 2

(
−5

2

)2

+ 22

=2

(
x− 5

2

)2

+
19

2

From this, the minimum value occurs at x = 5
2

The minimum value of the function is f
(
5
2

)
= 19

2
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Hence, the minimum point is
(
5
2
, 19

2

)
Also, the range is Rf = [19

2
,∞)

To sketch the graph, note that f(0) = 22. Hence the graph cuts the Y−axis at the point (0, 22).

To �nd the roots, we set y = o and solve;

2

(
x− 5

2

)2

+
19

2
=0

2

(
x− 5

2

)2

=− 19

2(
x− 5

2

)2

=− 19

4

x− 5

2
=±

√
−19

4

x =
5

2
±
√
−19

4

x =
5±
√
−19

2

Hence, f(x) = 2x2 − 10x + 22 has no real roots. Therefore, it does not cut the X−axis. The
sketch is shown below.

x

y

Example 4.3.3. Given the quadratic function f(x) = 2− 6x− x2;

i) complete the square of f(x).

ii) Hence, �nd the maximum value of the function f(x), and the value of x at which it occurs.

iii) sketch the graph y = 2− 6x− x2 and state the range.

Example 4.3.4. Given the quadratic function f(x) = x2 + 7x+ 6;

i) complete the square of f(x).

ii) Hence, �nd the minimum value of the function f(x), and the value of x at which it occurs.

iii) sketch the graph y = f(x) and state the range.

Sol: Exercise
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4.4. Quadratic Inequalities

We have looked at ways of solving the quadratic equations. We conclude our discussion of
quadratic functions by looking at the quadratic inequalities. To solve a quadratic inequality
such as ax2 + bx+ c ≤ 0, we use any of the two methods:

1. Factorise completely, then use the table of signs to determine the solution set.

OR

2. Sketch the graph of the quadratic and determine the solution set from the graph.

Example 4.4.1. Find the solution set to the inequality x2 + 5x+ 8 ≥ 2

Sol: We factorise the expression to obtain critical values

x2 + 5x+ 8 ≥2
x2 + 5x+ 6 ≥0

x2 + 2x+ 3x+ 6 ≥0
x(x+ 2) + 3(x+ 2) ≥0

(x+ 2)(x+ 3) ≥0

Critical values: x+ 2 = 0 =⇒ x = −2 and x+ 3 = 0 =⇒ x = −3

Critical values are x = −2 and x = −3

−∞ < x < −3 −3 < x < −2 −2 < x <∞

x+ 3 − + +

x+ 2 − − +

(x+ 3)(x+ 2) + − +

From the table, the solution set denoted SS is given by

SS = {x| − 3 ≤ x ≤ −2 or x ≥ −2, x ∈ R} OR SS = [−3,−2] ∪ [−2,∞)

Example 4.4.2. Solve the inequality 2x2 + 7x− 15 < 0

Sol: We factorise the expression to obtain critical values

2x2 + 7x− 15 <0

2x2 + 10x− 3x− 15 <0

2x(x+ 5)− 3x(x+ 5) <0

(2x− 3)(x+ 5) <0

Critical values are x = 3
2
and x = −5
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−∞ < x < −5 −5 < x < 3
2

3
2
< x <∞

2x− 3 − − +

x+ 5 − + +

(2x− 3)(x+ 5) + − +

The solution set is given by

SS = {x| − 5 < x <
3

2
, x ∈ R}

.

SS =

(
−5, 3

2

)

Example 4.4.3. Find the solution set to the inequality x2 + x+ 2 ≤ 0

Sol: Since b2− 4ac = 1− 4(1)(2) = −7, the quadratic has no real roots. Hence it does not cut
the X−axis. Further, note that this quadratic is above the x−axis, it is never negative for all
values of x. Therefore,x2 + x+ 2 ≤ 0 has no solutions.

SS = ∅

Example 4.4.4. Find the solution set to the inequality x2 + 1 < 0

Example 4.4.5. Find the solution set to the inequality x2 − 1 ≤ 0

Sol: Exercise

Example 4.4.6. Sketch the graph of f(x) = x2 − 4. Hence, use the graph to �nd the solution
set to the inequality x2 − 4 ≥ 0

Sol: The sketch is shown below

x

y

Shaded interval is the solution set. ie SS = (−∞,−2] ∪ [2,∞)
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5

Polynomial Functions

5.1. Introduction

So far, we have looked at functions of the form f(x) = ax+b, the linear functions and functions
of the form f(x) = ax2 + bx + c, the quadratic functions. Linear functions are polynomials of
degree 1 while quadratics are polynomials of degree 2. We now study polynomials of higher
degree.

De�nition 5.1.1. A polynomial of degree n, is a function of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where an, an−1, · · · , a0 are constants and x is the variable. n is usually an integer.

Note that the highest power of x determines the degree of the polynomial. This is usually
denoted by n.

Example 5.1.1. The following are examples of polynomials and their respective degrees:

f(x) = x3 − 5x2 + x− 7 is a polynomial of degree 3

g(x) = x5 − 5x4 + x3 − 7x2 − 4x+ 1 is a polynomial of degree 5

h(x) = x7 + 1 is a polynomial of degree 7

k(x) = x30 − 2x+ 5 is a polynomial of degree 30

5.2. Division of Polynomials

Let f(x) be a polynomial of degree n. Then the polynomial f(x) can be decomposed into
polynomials of lower degrees as follows:

f(x) = d(x)q(x) + r(x)

OR
f(x)

d(x)
= q(x) +

r(x)

d(x)

Where d(x), q(x) and r(x) are polynomials of lower degree than f(x). From the expression
above, d(x) is a polynomial called the divisor, q(x) is called the quotient and r(x) is called the
remainder.
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Any polynomial f(x) can be expressed in the form

f(x) = d(x)q(x) + r(x)

where q(x) is the quotient, d(x) is the divisor and r(x) is the remainder. We will look at 2
methods used in dividing polynomials.

Long Division

This method can be used to divide a polynomial by a linear factor. The example below demon-
strates the use of long division.

Example 5.2.1. Determine whether x−1 is a factor of the polynomial f(x) = x3+3x2+3x+1

Sol: We use long division to determine the remainder.

x2 + 4x+ 7

x− 1) x3 + 3x2 + 3x+ 1

x3 − x2

4x2 + 3x+ 1

4x2 − 4x+ 0

7x+ 1

7x− 1

8

Hence, the quotient q(x) = x2 + 4x+ 7 and the remainder r(x) = 8

Since the remainder is not 0, we conclude that x− 1 is not a factor of f(x) = x3+3x2+3x+1.

Note: In this example,

• x− 1 is the divisor, d(x)

• x2 + 4x+ 7 is the quotient, q(x)

• 8 is the remainder, r(x)

Example 5.2.2. Determine whether x− 1 is a factor of the polynomial g(x) = x3− x2− x+1

Sol: We use long division to determine the remainder.

x2 − 1

x− 1)x3 − x2 − x+ 1

x3 − x2

− x+ 1

−x+ 1

0

Hence, the quotient q(x) = x2 − 1 and the remainder r(x) = 0

We see that the remainder is 0. Hence, we conclude that x−1 is a factor of g(x) = x3−x2−x+1.
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Synthetic Division

This method, like long division is used to divide polynomials. arguably, it simpli�es the process
involved in long division. The example below demonstrates the use of synthetic division.

Example 5.2.3. Determine the quotient and the remainder when f(x) = x3 + 3x2 + 3x+ 1 is
divided by x− 1.

Sol: We use synthetic division to determine the remainder. We let x− 1 = 0 =⇒ x = 1. Then
we have

1 3 3 1 all coe�cints of f(x)

0 1 4 7

1|1 4 7 8 = r(x) remainder

Hence, quotient is q(x) = x2 + 4x+ 7 and remainder is r(x) = 8.

Example 5.2.4. Determine the quotient and the remainder when f(x) = 2x3 − 3x2 + 2x is
divided by 2x+ 1.

Sol: Let 2x+ 1 = 0 =⇒ x = −1
2
. Using synthetic division, we have

2 − 3 2 0

0 − 1 2 − 2

−1

2
|2 − 4 4 − 2 = r(x)

Hence, quotient is q(x) = 2x2 − 4x+ 4 and remainder is r(x) = −2.

Example 5.2.5. Use synthetic division to determine whether x+ 2 is a factor of 4x4 + x2 − 1

Sol: Let x+ 2 = 0 =⇒ x = −2. Using synthetic division, we have

4 0 1 0 − 1

0 − 8 16 − 34 68

−2|4 − 8 17 − 34 67 = r(x)

Hence, quotient is q(x) = 4x2 − 8x3 + 17x− 34 and remainder is r(x) = 67.

5.2.1 The Remainder Theorem

Let us look at an important theorem used in the evaluation of remainders when dividing
polynomials by linear terms. This is known as the remainder theorem.
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Theorem 5.2.1. Let f(x) be a polynomial of degree n ≥ 2. If f(x) is divided by a linear term

px+ q, the remainder is f
(
− q
p

)
.

Example 5.2.6. Find the remainder when f(x) = x3 − x2 + 3x− 2 is divided by x+ 2

Sol: let x+ 2 = 0 so that x = −2.

Then, f(−2) = (−2)3 − (−2)2 + 3(−2)− 2 = −20.

The remainder is −20

Example 5.2.7. Find the remainder when f(x) = x3 − x2 + 3x− 2 is divided by 2x− 1

Sol: let 2x− 1 = 0 so that x = 1
2
.

Then, f
(
1
2

)
=
(
1
2

)3 − (1
2

)2
+ 3(1

2
)− 2 = −5

8
.

The remainder is −5
8

Example 5.2.8. Let f(x) = x3+ rx2+ tx− 3 be a polynomial. When f(x) is divided by x− 1
and x+ 1, the remainders are 1 and −9 respectively. Find the values of r and t.

Sol:

Dividing by x−1 gives remainder=f(1) = (1)3+r(1)2+t(1)−3 = r+t−2. Hence, r+t−2 = 1

Dividing by x + 1 gives remainder=f(−1) = (−1)3 + r(−1)2 + t(−1) − 3 = r − t − 4. Hence,
r − t− 4 = −9

Solving r + t− 2 = 1 and r − t− 4 = −9 simultaneously for r and t gives, r = −1 and t = 4

5.2.2 Factor Theorem

We now turn our attention to another important theorem, the factor theorem. This theorem
basically adds on to the remainder theorem and aids us in the determination of factors of
polynomials. This is important in factorization of polynomials.

Theorem 5.2.2. Let f(x) be a polynomial of degree n and px+q be a linear term. If f
(
− q
p

)
= 0,

then px+ q is a factor of f(x). Conversely, if px+ q is a factor of f(x), then f
(
− q
p

)
= 0.

Example 5.2.9. Show that x− 1 is a factor of f(x) = x3 − 6x2 − x+ 6

Sol: let x− 1 = 0 so that x = 1.

Then, f(1) = (1)3 − 6(1)2 − (1) + 6 = 0.

Since the remainder is 0, x− 1 is a factor of f(x) = x3 − 6x2 − x+ 6
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Example 5.2.10. The expression f(x) = 2x3 + ux2 + vx− 2 is exactly divisible by x− 2 and
2x+ 1. Find the values of u and v.

Sol:

Dividing f(x) by x− 2 gives remainder=f(2) = 2(2)3 + u(2)2 + v(2)− 2 = 16 + 4u+ 2v − 2

Since x− 2 is a factor, 16 + 4u+ 2v − 2 = 0 so that 2u+ v = −7

Similarly,

Dividing f(x) by 2x+ 1 gives remainder=f
(
−1

2

)
= 2

(
−1

2

)3
+ u

(
−1

2

)2
+ v

(
−1

2

)
− 2

This gives −1
4
+ u

4
− v

2
− 2 = 0 so that u− 2v = 9

Solving 2u+ v = −7 and u− 2v = 9 simultaneously gives u = −1 and v = −5.

5.3. Roots of Polynomials

To determine the roots of a polynomial equation anx
n + an−1x

n−1 + · · · + a1x + a0 = 0, we
�rst need to factorise and then equate each of the factors to zero. However, factorization is not
straight forward as it involves a trial and error approach. To simplify our search, we may use
the following approach:

Suppose we have a polynomial f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0, and we wish to determine
the roots of the equation f(x) = 0 i.e anx

n + an−1x
n−1 + · · ·+ a1x+ a0 = 0. Then;

• obtain the factors of the constant term a0

• obtain factors of an (the coe�cient of the highest power of x)

• divide factors of a0 by factors of an. This gives possible rational roots.

• use the factor and remainder theorems, or synthetic division to obtain the actual roots
of f(x)

Example 5.3.1. Solve the equation 2x3 + 3x2 − 3x− 2 = 0

Sol: Here, a0 = −2 and an = 2

coe�cients of −2: ±1, ±2

coe�cients of 2: ±1, ±2

Possible factors: ±1, ±2, ±1
2

To �nd the actual factors, we use the Remainder and Factor Theorems.

f(1) = 2(1)3 + 3(1)2 − 3(1) − 2 = 0. Hence x − 1 is a factor. Letting x − 1 = 0, gives x = 1,
which is one of the roots. To �nd the remaining roots, we divide 2x3 + 3x2 − 3x − 2 by the
found linear factor x− 1. You can use long division or synthetic division.
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We use synthetic division:

2 3 − 3 − 2

0 2 5 2

1|2 5 2 0 = r(x)

This gives quotient q(x) = 2x2 + 5x+ 2 and remainder as r(x) = 0.

Hence, 2x3 + 3x2 − 3x− 2 = (x− 1)(2x2 + 5x+ 2) = (x− 1)(2x+ 1)(x+ 2)

Since 2x3 + 3x2 − 3x− 2 = 0, we have (x− 1)(2x+ 1)(x+ 2) = 0 so that x = 1 or x = −1
2
or

x = −2

Therefore, the solution set is {1,−1
2
,−2}

Example 5.3.2. Given that f(x) = x3 − 3x2 + x+ 2, solve f(x) = 0

Sol: Here, a0 = 2 and an = 1

coe�cients of 2: ±1, ±2

coe�cients of 1: ±1

Possible factors: ±1, ±2

To �nd the actual factors, we use the Remainder and Factor Theorems.

f(1) = (1)3 − 3(1)2 + (1) + 2 = 1− 3 + 1 + 2 = 1 6= 0. Hence x− 1 is not a factor.

f(−1) = (−1)3 − 3(−1)2 + (−1) + 2 = −1− 3− 1 + 2 6= 0. Hence x+ 1 is not a factor.

f(2) = (2)3 − 3(2)2 + (2) + 2 = 8− 12 + 2 + 2 = 0. Hence x− 2 is a factor.

We can now apply the synthetic division:

1 − 3 1 2

0 2 − 2 − 2

2|1 − 1 − 1 0 = r(x)

This gives quotient q(x) = x2 − x− 1 and remainder as r(x) = 0 so that

x3− 3x2+x+2 = (x− 2)(x2−x− 1). Verify that x2−x− 1 can not be factorised any further.

Since x3 − 3x2 + x+ 2 = 0, we have (x− 2)(x2 − x− 1) = 0 so that x = 2

Therefore, the solution set is {2}

5.4. Graphs of Polynomial Functions

We have looked at ways of sketching the graphs of linear and quadratic functions. We extend
our discussion to the sketching of graphs of polynomials of higher degrees.
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Example 5.4.1. Sketch the graph of the polynomial function f(x) = (x− 1)(x+ 2)(x− 4)

Sol: The y−intercept is determined by letting x = 0. Thus f(0) = (0 − 1)(0 + 2)(0 − 4) = 8
To determine the x−intercepts, we let f(x) = 0 and solve the polynomial equation. Thus, we
have

(x− 1)(x+ 2)(x− 4) =0

so that (x− 1) = 0, (x+ 2) = 0 or (x− 4) = 0

Hence, x = 1, x = −2 and x = 4

−2 1 4

x

y

Example 5.4.2. Sketch the graph of the function f(x) = 2x3 + 3x2 − 3x− 2

Sol: The y−intercept is determined by letting x = 0. Thus f(0) = 2(0)3+3(0)2−3(0)−2 = −2
To determine the x−intercepts, we let f(x) = 0 and solve the polynomial equation. Thus, we
have

2x3 + 3x2 − 3x− 2 = 0

(x− 1)(x+ 2)(x+
1

2
) =0

so that (x− 1) = 0, (x+ 2) = 0 or (x+
1

2
) = 0

Hence, x = 1, x = −2 and x = −1

2

−2

2

x

y

The technique in sketching the graphs of polynomial function involves determining the intercept.
Further technique of determining the turning points will be discussed after covering calculus.
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5.5. Polynomial Inequalities

We have looked at polynomial equations of the form f(x) = 0, whose results are just the roots
of the polynomial or values of x for which the equation holds. We now look at the polynomial
inequalities whose solutions are in�nite sets of real numbers.

Example 5.5.1. Solve the inequality (x+ 3)(x+ 1)(x− 2) ≥ 0

Sol: First, obtain the critical values: (x+3)(x+1)(x−2) = 0 so that x = −3, x = −1 and
x = 2 are the critical points. Constructing the table of signs, we have;

factors −∞ < x < −3 −3 < x < −1 −1 < x < 2 2 < x <∞

x+ 3 − + + +

x+ 1 − − + +

x− 2 − − − +

(x+ 3)(x+ 1)(x− 2) − + − +

From the table,

SS = {x| − 3 ≤ x ≤ −1 or x ≥ 2, x ∈ R} = [−3,−1] ∪ [2,∞)

Example 5.5.2. Solve the inequality (x+ 5)(x+ 1)(x− 5) < 0

Sol: First, obtain the critical values: (x+5)(x+1)(x−5) = 0 so that x = −5, x = −1 and
x = 5 are the critical points. Constructing the table of signs, we have;

factors −∞ < x < −5 −5 < x < −1 −1 < x < 5 5 < x <∞

x+ 5 − + + +

x+ 1 − − + +

x− 5 − − − +

(x+ 5)(x+ 1)(x− 5) − + − +

From the table,

SS = {x| x < −5 or − 1 < x < 5, x ∈ R} = (−∞,−5) ∪ (−1, 5)

Example 5.5.3. Solve the polynomial inequality 2x3 + 3x2 − 3x− 2 ≤ 0

Sol: We �rst determine the critical values by factorisation:

2x3 + 3x2 − 3x− 2 ≤ 0

(x− 1)(2x2 + 5x+ 2) ≤ 0

(x− 1)(2x+ 1)(x+ 2) ≤ 0

Therefore, the critical values are: x = 1, x = −1
2

and x = −2. We now construct the table
of signs as shown below:
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factors −∞ < x < −2 −2 < x < −1
2
−1

2
< x < 1 1 < x <∞

x− 1 − − − +

2x+ 1 − − + +

x+ 2 − + + +

(x− 1)(2x+ 1)(x+ 2) − + − +

From the table,

SS = {x| x ≤ −2 or − 1

2
≤ x ≤ 1, x ∈ R} = (−∞,−2] ∪ [−1

2
, 1]

Example 5.5.4. Solve the inequality 6x3 − 5x2 ≥ 7x− 4

Sol: Factorise to obtain the critical values:

6x3 − 5x2 ≥ 7x− 4

6x3 − 5x2 − 7x+ 4 ≥ 0

(3x− 4)(2x− 1)(x+ 1) ≥ 0

Critical values are: x = 4
3
, x = 1

2
, and x = −1. We now construct the table of

signs as shown below:

factors −∞ < x < −1 −1 < x < 1
2

1
2
< x < 4

3
4
3
< x <∞

3x− 4 − − − +

2x− 1 − − + +

x+ 1 − + + +

(3x− 4)(2x− 1)(x+ 1) − + − +

From the table,

SS = {x| − 1 ≤ x ≤ 1

2
or x ≥ 4

3
, x ∈ R} = [−1, 1

2
] ∪ [

4

3
,∞)

Example 5.5.5. Solve the inequality x(2− x)(3 + x) < 0

Sol: Critical values are: x = 0, x = 2 and x = −3

factors −∞ < x < −3 −3 < x < 0 0 < x < 2 2 < x <∞

x − − + +

2− x + + + −

3 + x − + + +

x(2− x)(3 + x) + − + −

From the table,

SS = {x| − 3 < x < 0 or x > 2, x ∈ R} = (−3, 0) ∪ (2,∞)
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5.6. Partial Fractions

In order to resolve an algebraic rational fraction into its partial fractions, we must factorise the
denominator completely. The numerator must be at least one degree less than the denominator,
otherwise, we divide. Consider the addition of two fractions below;

2

x+ 1
+

1

x− 2
=
2(x− 2) + (x+ 1))

(x+ 1)(x− 2)

=
2x− 4 + x+ 1

(x+ 1)(x− 2)

=
3x− 3

(x+ 1)(x− 2)

We say, the partial fraction decomposition of 3x−3
(x+1)(x−2) gives the two fractions 2

x+1
and 1

x−2 .
Partial fraction decomposition involves the reverse process of the above process, ie it involves
�breaking down" a seemingly complex algebraic fraction into its simpler partial fractions. There
are basically three types of partial fraction and the form of partial fraction used is summarized
in the table below. The following are the three types we will consider:

1. The �rst type involves a rational function whose denominator can be factorised completely
into linear terms.

2. The second type involves a rational function whose denominator can factorised, but some
terms are repeating.

3. The third involves a rational function whose denominator contains an irreducible quadratic
function, ie a quadratic that can not be factorised into linear terms

Type Denominator containing Expression Form of Partial Fraction

1 Linear Factors f(x)
(x−a)(x+b)(x+c)

A
x−a +

B
x+b

+ C
x+c

2 Repeating Factors f(x)
(x+a)(x+b)3

A
(x+a)

+ B
(x+b)

+ C
(x+b)2

+ D
(x+b)3

3 Quadratic Factors f(x)
(ax2+bx+c)(x−d)

Ax+B
ax2+bx+c

+ D
x−d

Example 5.6.1. Resolve the fraction 11−3x
x2+2x−3 into its partial fractions

Sol: Factorise the denominator completely and use the type 1 decomposition:

This gives x2 + 2x− 3=(x+ 3)(x− 1) so that 11−3x
x2+2x−3 = 11−3x

(x+3)(x−1) . Therefore,

11− 3x

(x+ 3)(x− 1)
=

A

x+ 3
+

B

x− 1

=
A(x− 1) +B(x+ 3)

(x+ 3)(x− 1)

Equating the numerators, we have: 11− 3x =A(x− 1) +B(x+ 3) (i)
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Our task is to determine the values of A and B using (i). When x = 1, 11− 3(1) = A(1− 1) +
B(1 + 3) which gives B = 2

When x = −3, we have 11− 3(−3) = A(−3− 1) +B(−3 + 3) which gives us A = −5

Therefore,
11− 3x

x2 + 2x− 3
=

2

x− 1
− 5

x+ 3

Example 5.6.2. Decompose 2x2−9x−35
(x+1)(x−2)(x+3)

into partial fractions.

Sol: The denominator is already factorised completely.

Let 2x2−9x−35
(x+1)(x−2)(x+3)

= A
(x+1)

+ B
x−2 +

C
x+3

= A(x−2)(x+3)+B(x+1)(x+3)+C(x−1)(x+2)
(x+1)(x−2)(x+3)

Equating the numerators, we have:

2x2 − 9x− 35 = A(x− 2)(x+ 3) +B(x+ 1)(x+ 3) + C(x+ 1)(x− 2)

When x = 2, we have

2(2)2 − 9(2)− 35 =A(2− 2)(2 + 3) +B(2 + 1)(2 + 3) + C(2 + 1)(2− 2)

−45 =15B

B =− 3

When x = −3, we have

2(−3)2 − 9(−3)− 35 =A(−3− 2)(−3 + 3) +B(−3 + 1)(−3 + 3) + C(−3 + 1)(−3− 2)

10 =5C

C =2

When x = −1, we have

2(−1)2 − 9(−1)− 35 =A(−1− 2)(−1 + 3) +B(−1 + 1)(−1 + 3) + C(−1 + 1)(−1− 2)

−24 =− 6C

C =4

So that
11− 3x

x2 + 2x− 3
=

4

(x+ 1)
− 3

x− 2
+

2

x+ 3

Example 5.6.3. Resolve 5x2−2x−19
(x+3)(x−1)2 into partial fractions

Sol: This involves a denominator with a repeating factor. Thus,

let 5x2−2x−19
(x+3)(x−1)2 = A

x+3
+ B

x−1 +
C

(x−1)2 = A(x−1)2+B(x+3)(x−1)+C(x+3)
(x+3)(x−1)2

Hence, by algebraic addition,

5x2 − 2x− 19 = A(x− 1)2 +B(x+ 3)(x− 1) + C(x+ 3)
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When x = 1, we have

5(1)2 − 2(1)− 19 =A(1− 1)2 +B(1 + 3)(1− 1) + C(1 + 3)

−16 =4C

C =− 4

When x = −3

5(−3)2 − 2(−3)− 19 =A(−3− 1)2 +B(−3 + 3)(−3− 1) + C(−3 + 3)

32 =16A

A =2

When x = 0

5(0)2 − 2(0)− 19 =A(0− 1)2 +B(0 + 3)(0− 1) + C(0 + 3)

−19 =A− 3B + 3C

3B =19 + A+ 3C

3B =19 + (2) + 3(−4)
3B =9

B =3

Hence,
5x2 − 2x− 19

(x+ 3)(x− 1)2
=

2

x+ 3
+

3

x− 1
− 4

(x− 1)2

Example 5.6.4. Decompose the rational function 7x2+5x+13
(x2+2)(x+1)

into partial fractions.

Sol: We have an irreducible quadratic in the denominator.

Let 7x2+5x+13
(x2+2)(x+1)

= Ax+B
x2+2

+ C
x+1

= (Ax+B)(x+1)+C(x2+2)
(x2+2)(x+1)

This gives us:
7x2 + 5x+ 13 = (Ax+B)(x+ 1) + C(x2 + 2)

When x = −1, we have

7(−1)2 + 5(−1) + 13 =(A(−1) +B)(−1 + 1) + C((−1)2 + 2)

15 =3C

C =5

When x = 0, we have

7(0)2 + 5(0) + 13 =(A(0) +B)(0 + 1) + C((0)2 + 2)

13 =B + 2C

B =13− 2C

B =13− 2(5)

B =3
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When x = 1, we have

7(1)2 + 5(1) + 13 =(A(1) +B)(1 + 1) + C((1)2 + 2)

25 =2(A+ 3) + 5(3)

2A =25− 6− 15

2A =4

A =2

Hence, decomposition is given by

7x2 + 5x+ 13

(x2 + 2)(x+ 1)
=

2x+ 3

x2 + 2
+

5

x+ 1

Example 5.6.5. Resolve 3+6x+4x2−2x3
x2(x2+3)

into partial fractions

Sol: The denominator contains a repeating term and an irreducible quadratic.

Let 3+6x+4x2−2x3
x2(x2+3)

= A
x
+ B

x2
+ Cx+D

x2+3
= Ax(x2+3)+B(x2+3)+x2(Cx+D)

x2(x2+3)

3 + 6x+ 4x2 − 2x3 =Ax(x2 + 3) +B(x2 + 3) + x2(Cx+D)

=Ax3 + 3Ax+Bx2 + 3B + Cx3 +Dx2

=(A+ C)x3 + (B +D)x2 + 3Ax+ 3B

Hence, 3 + 6x+ 4x2 − 2x3 = (A+ C)x3 + (B +D)x2 + 3Ax+ 3B

Using the equality of polynomials and equating the like terms, we have:

(A+ C)x3 = −2x3 =⇒ A+ C = −2 (i)

(B +D)x2 = 4x2 =⇒ B +D = 4 (ii)

3Ax = 6x =⇒ 3A = 6 (iii)

3B = 3 =⇒ 3B = 3 (iv)

From (iv) we get B = 1, and from (ii), D = 4−B = 4− 1 = 3

From (iii) we get A = 2, and from (i), C = −2− A = −2− 2 = −4

Therefore, we get
3 + 6x+ 4x2 − 2x3

x2(x2 + 3)
=

2

x
+

1

x2
+

3− 4x

x2 + 3
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6

Rational Functions

6.1. Introduction

Recall that a rational number is a number that can be written in the form a
b
, where a, b ∈ Z.

In this section, we will now consider rational functions.

De�nition 6.1.1. A rational function f(x), is a function of the form

f(x) =
p(x)

q(x)

where p(x) and q(x) are functions of x with q(x) 6= 0 for all values of x ∈ Df

Example 6.1.1. Examples of rational functions are: f(x) = x+2
x−5 and g(x) = 2x

x2+x−7

We will be concerned with the sketching of the graphs, �nding domains and ranges of these
functions. We will also look at the equations and inequalities involving rational functions.

6.2. Graphs of Rational Functions

To sketch the graph of a rational function, we need to determine the domain, the range,
intercepts and asymptotes if they exists. We have already discussed methods of determining
the domain and range of a rational function. The X−intercept is the value of x where the graph
cuts the X−axis. It can be found by letting y = 0 in the equation y = f(x). The Y−intercept
is the value of y where the graph cuts the Y−axis. It can be found by letting x = 0 in the
equation y = f(x).

An asymptote of a graph is a line graph such that the graph does not touch nor cut it. We have
vertical, horizontal and slant asymptotes. Vertical asymptotes are determined by values of x
for which the function is not de�ned, while horizontal asymptotes are determined by values of
y for which the function is not de�ned.

Example 6.2.1. Sketch the graph of f(x) = 1
x

Sol: For this function, verify that Df = {x| x 6= 0, x ∈ R} and Rf = {y| y 6= 0, y ∈ R}
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From the domain, since x 6= 0, we conclude that the line x = 0 is a vertical asymptote.

From the range, since y 6= 0, we conclude that the line y = 0 is a horizontal asymptote

We have no intercepts. The sketch is shown below

x

y

Example 6.2.2. Given f(x) = 2
x+1

,

i) �nd the domain of f

ii) �nd the range of f

iii) sketch the graph of f

iv) Write down the equation of the asymptotes

Sol: This is an example of a rational function

i) Domain: we need x+ 1 6= 0 =⇒ x 6= −1. Hence, Df = {x| x 6= −1, x ∈ R}

ii) Range: we make x the subject of the formula. Thus, y = 2
x+1

=⇒ x = 2−y
y

Hence, Rf = {y| y 6= 0, y ∈ R}

iii) Sketch: verify that the Y−intercept is y = 2 and the X−intercept does not exists

From the domain, the vertical asymptote is x = −1.

From the range, the horizontal asymptote is y = 0 The graph is shown below:

2

x

y
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iv) vertical asymptote: x = −1 and horizontal asymptote: y = 0

Example 6.2.3. Given the function f(x) = 2x+3
5x−4

i) �nd the domain of f

ii) �nd the range of f

iii) sketch the graph of f

Sol: This is a rational function

i) Domain: we need 5x− 4 6= 0 =⇒ x 6= 4
5
. Hence, Df = {x| x 6= 4

5
, x ∈ R}

ii) Range: we make x the subject of the formula. Thus, y = 2x+3
5x−4 =⇒ x = 3+4y

5y−2

Hence, Rf = {y| y 6= 2
5
, y ∈ R}

iii) Sketch: verify that the Y−intercept is y = −3
4
and the X−intercept is −3

2

From the domain, the vertical asymptote is x = 4
5
.

From the range, the horizontal asymptote is y = 2
5
The graph is shown below:

x

y

Example 6.2.4. Given the function f(x) = 1
x2+5x−6

i) �nd the domain of f(x)

ii) �nd the range of f(x)

iii) sketch the graph of f(x)

Sol: This is also a rational function

i) Domain: we need x2 + 5x− 6 6= 0. The solution set is the required domain.

x2 + 5x− 6 6=0

x2 − x+ 6x− 6 6=0

x(x− 1) + 6(x− 1) 6=0

(x− 1)(x+ 6) 6=0
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We have x 6= 1 and x 6= −6. Therefore,

Df = {x| x 6= 1 and x 6= −6, x ∈ R}

ii) Range: Let y = 1
x2+5x−6 so that y(x2 + 5x− 6) = 1 =⇒ yx2 + 5yx− 6y − 1 = 0

Note that this is a quadratic with a = y, b = 5y and c = −6y − 1.

we need b2 − 4ac ≥ 0

(5y)2 − 4(y)(−6y − 1) ≥0
25y2 + 24y2 + 4y ≥0

49y2 + 4y ≥0
y(49y + 4) ≥0

Critical values: we have y = 0 and y = − 4
49

−∞ < y < − 4
49
− 4

49
< y < 0 0 < y <∞

y − − +

49y + 4 − + +

y(49y + 4) + − +

From the table, Rf =
(
−∞,− 4

49

)
∪ (0,∞)

iii) Sketch: verify that the Y−intercept is y = −1
6
and the X−intercepts do not exist.

From the domain, the vertical asymptote is x = 1 and x = −6.

From the range, the horizontal asymptote is y = 0 and y = − 4
49
. Graph shown below:

2

x

y

Example 6.2.5. Given the function f(x) = 3x−9
x2−x−2 ,

i) �nd the domain

ii) �nd the range

iii) sketch the graph

Sol: Exercise
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6.3. Equations and Inequalities

To solve the equations involving rational function, the basic thing is to cross multiply. The
following examples demonstrate the approach.

Example 6.3.1. Solve the equation x+1
2x−5 = 1

Sol: We cross multiply;

x+ 1

2x− 5
=1

2x− 5 =x+ 1

2x− x =5 + 1

x =6

Hence, SS = {6} is the solution set.

Example 6.3.2. Solve the equation 2x−7
x+3

= 0

Sol: If 2x−7
x+3

= 0, then the numerator is zero. Hence, 2x− 7 = 0 =⇒ x = 7
2

Example 6.3.3. Solve the equation 1
x2+9x+7

= 1
x

Sol: We can cross multiply

1

x2 + 9x+ 7
=
1

x

x2 + 9x+ 7 =x

x2 + 9x+ 7− x =0

x2 + 8x+ 7 =0

(x+ 1)(x+ 7) =0

Hence, x+ 1 = 0 =⇒ x = −1 and x+ 7 = 0 =⇒ x = −7. Thus, we have SS = {−1,−7}

To solve the rational inequality, do NOT CROSS MULTIPLY. The following examples demon-
strate the technique to be used.

Example 6.3.4. Solve the inequality 2x+3
x−4 < 3

Sol: We do not cross multiply.

2x+ 3

x− 4
<3

2x+ 3

x− 4
− 3 <0

2x+ 3− 3(x− 4)

x− 4
<0

2x− 3x+ 3 + 12

x− 4
<0

−x+ 15

x− 4
<0
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At this point, we get the critical points:

from the numerator, −x+ 15 = 0 =⇒ x = 15 is a critical point

from the denominator, x− 4 = 0 =⇒ x = 4 is a critical point

−∞ < x < 4 4 < x < 15 15 < x <∞

−x+ 15 + + −

x− 4 − + +

−x+15
x−4 − + −

From the table,
SS = (−∞, 4) ∪ (15,∞)

Example 6.3.5. Find the solution set to the inequality x−1
x2+6x+5

≤ 0

Sol: We need to �nd the critical values;

x− 1

x2 + 6x+ 5
≤0

x− 1

x2 + x+ 5x+ 5
≤0

x− 1

x(x+ 1) + 5(x+ 1)
≤0

x− 1

(x+ 1)(x+ 5)
≤0

At this point, we get the critical points:

from the numerator, x− 1 = 0 =⇒ x = 1 is a critical point

from the denominator, (x+ 1)(x+ 5) = 0 =⇒ x = −1 and x = −5 are critical points

factors −∞ < x < −5 −5 < x < −1 −1 < x < 1 1 < x <∞

x− 1 − − − +

x+ 1 − − + +

x+ 5 − + + +

x−1
(x+1)(x+5)

− + − +

From the table,
SS = (−∞,−5) ∪ (−1, 1]
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7

Radical Functions

7.1. Introduction

In this section, we discuss another type of functions called radical functions.

De�nition 7.1.1. A radical function in x variable, is a function of the form

f(x) = k
√
q(x) + h

where q(x) is some function of x. k and h are constants

We will examine some standard radical functions through examples. Here, we will restrict our
discussion to cases where q(x) is either linear or quadratic.

Radicals of the form k
√
ax+ b+ h

Example 7.1.1. Sketch the graph of the function f(x) =
√
x.

Sol: This is one of the standard radical functions. Before we sketch, let us determine the
domain. Recall that the square root of a negative number is not real. Hence, we only need
positive values of x for this to hold as a function. Therefore

Df = {x| x ≥ 0, x ∈ R} = [0,∞)

−3 −2 −1 1 2 3

−2

−1

1

2

3

x

y

87



From the graph, we can see that

Rf = {y| y ≥ 0, x ∈ R} = [0,∞)

Example 7.1.2. Sketch the graph of the function f(x) =
√
−x.

Sol: This is another standard radical function. To determine the domain, recall that the square
root of a negative number is not real. Hence, we need −x ≥ 0 =⇒ x ≤ 0. Thus, we need only
the negative values of x for this to hold as a function. Therefore

Df = {x| x ≤ 0, x ∈ R}
OR

Df = (−∞, 0]

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y

From the graph, we can see that

Rf = {y| y ≥ 0, x ∈ R} = [0,∞)

Example 7.1.3. Sketch the graph of the function f(x) =
√
1− x.

Sol: For the domain, we need 1− x ≥ 0 =⇒ x ≤ 1. Hence,

Df = {x| x ≤ 1, x ∈ R} = (−∞, 1]

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x

y
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From the graph, we can see that

Rf = {y| y ≥ 0, x ∈ R} = [0,∞)

Example 7.1.4. Sketch the graph of the function f(x) =
√
x+ 1 + 2.

Sol: For the domain, we need x+ 1 ≥ 0 =⇒ x ≥ −1. Hence,

Df = {x| x ≥ −1, x ∈ R} = [−1,∞)

−1

2

3

x

y

From the graph, we can see that

Rf = {y| y ≥ 2, x ∈ R} = [1,∞)

Note 7.1.1. If f(x) = k
√
ax+ b+ h. Then

• k determines whether the function is above or below the x−axis. If k is positive, then
the graph is above x−axis, if k is negative, then the graph is below the x−axis.

• h is the vertical shift. If h is positive, then the graph shifts h units upwards. If h is
negative, then the graph shifts h units downward.

Example 7.1.5. Find the domain and sketch the graph of f(x) = −
√
x− 2− 1

Sol: For the domain, we need x− 2 ≥ 0 =⇒ x ≥ 2. Hence,

Df = {x| x ≥ 2, x ∈ R} = [2,∞)
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2−1

x

y

From the graph, we can see that

Rf = {y| y ≤ −1, x ∈ R} = (−∞,−1]

Radicals of the form k
√
ax2 + bx+ c+ h

Here, the domain is all values of x such that ax2 + bx + c ≥ 0. It faces up if k > 0 and faces
down if k < 0.

Example 7.1.6. Find the domain, range and sketch the graph of the function f(x) =
√
x2 + 6x+ 5

Sol: For the domain, we need x2 + 6x + 5 ≥ 0. Hence, the domain is just the solution set of
the inequality x2 + 6x+ 5 ≥ 0. Thus,

x2 + 6x+ 5 ≥0
x2 + x+ 5x+ 5 ≥0

x(x+ 1) + 5(x+ 1) ≥0
(x+ 5)(x+ 1) ≥0

Critical values: x = −5 and x = −1

−∞ < x < −5 −5 < x < −1 −1 < x <∞

x+ 5 − + +

x+ 1 − − +

(x+ 5)(x+ 1) + − +

The solution set is
SS = {x| x ≤ −5 or x ≥ −1, x ∈ R}

. Therefore,

Df = {x| x ≤ −5 or x ≥ −1, x ∈ R} = (−∞,−5] ∪ [−1,∞)
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−5 −1
x

y

From the graph, we can see that

Rf = {y| y ≥ 2, x ∈ R} = [1,∞)

7.2. Equations and Inequalities

We need to remember that the square root symbol without a negative, denotes a positive square
root. To remove the square root symbol requires squaring on both sides. At times, this process
may be repeated.

Example 7.2.1. Solve the equation
√
3x+ 7− x = 1

Sol: This equation involves a radical.

√
3x+ 7− x =1
√
3x+ 7 =x+ 1(√

3x+ 7
)2

=(x+ 1)2

3x+ 7 =x2 + 2x+ 1

x2 − x− 6 =0

(x+ 2)(x− 3) =0

Hence, we have x + 2 = 0 =⇒ x = −2 and x − 3 = 0 =⇒ x = 3. We discard −2 since it does
not hold when we substitute it in the equation. Hence,

SS = {3}

Example 7.2.2. Solve the expression
√
6x+ 7−

√
3x+ 3 = 1
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Sol: This is an equation involving radicals.

√
6x+ 7−

√
3x+ 3 =1
√
6x+ 7 =1 +

√
3x+ 3(√

6x+ 7
)2

=
(
1 +
√
3x+ 3

)2
6x+ 7 =1 + 2

√
3x+ 3 + 3x+ 3

3x+ 3 =2
√
3x+ 3

(3x+ 3)2 =
(
2
√
3x+ 3

)2
9x2 + 18x+ 9 =4(3x+ 3)

9x2 + 6x− 3 =0

3x2 + 2x− 1 =0

3x2 + 3x− x− 1 =0

3x(x+ 1)− 1(x+ 1) =0

(3x− 1)(x+ 1) =0

Hence, x = 1− or x = 1
3
implying that SS = {−1, 1

3
}

Example 7.2.3. Given x√
x+1

+ 2x√
x+5

= 0 �nd the solution set to the equation.

Sol: This equation involves positive radical or positive square root.

x√
x+ 1

+
2x√
x+ 5

=0

x√
x+ 1

=− 2x√
x+ 5(

x√
x+ 1

)2

=

(
− 2x√

x+ 5

)2

x2

x+ 1
=

4x2

x+ 5
x2

x+ 1
− 4x2

x+ 5
=0

x2
(

1

x+ 1
− 4

x+ 5

)
=0

x2(1− 3x)

(x+ 1)(x+ 5)
=0

Either x2 = 0 =⇒ x = 0 or 1− 3x = 0 =⇒ x = 1
3
. Hence, we have

SS = {0, 1
3
}

Example 7.2.4. Given the inequality 1√
x
< 2√

x+27
, �nd the solution set
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Sol: This is an inequality involving positive square root.

1√
x
<

2√
x+ 27(

1√
x

)2

<

(
2√

x+ 27

)2

1

x
<

4

x+ 27
1

x
− 4

x+ 27
<0

27− 3x

x(x+ 27)
<0

3(9− x)
(x− 0)(x+ 27)

<0

Critical Values: From the denominator, x = 0 and x = −27. From the numerator, x = 9

factors −∞ < x < −27 −27 < x < 0 0 < x < 9 9 < x <∞

x − − + +

9− x + + + −

x+ 27 − + + +

x(9− x)(x+ 27) + − + −

From the table, x ∈ (−27, 0) ∪ (9,∞), from
√
x, we need x ≥ 0 =⇒ x ∈ [0,∞) and from√

x+ 27, we need x+ 27 ≥ 0 =⇒ x ≥ −27 =⇒ x ∈ [−27,∞). Hence, SS = (9,∞)

Example 7.2.5. Solve the inequality
√
2−
√
x+ 6 ≤ −

√
x

Sol: We rewrite the expression so that we have only positive terms, then square.
√
2−
√
x+ 6 ≤−

√
x

√
2 +
√
x ≤
√
x+ 6(√

2 +
√
x
)2
≤
(√

x+ 6
)2

2 + 2
√
2
√
x+ x ≤x+ 6

2
√
2x ≤4
√
2x ≤2(√

2x
)2
≤22

2x ≤ 4

x ≤ 2

From this expression, we need x ≤ 2 meaning that x ∈ (−∞, 2]

From
√
x+ 6, we need x+ 6 ≥ 0 =⇒ x ≥ −6 meaning that x ∈ [−6,∞)

From
√
x, we need x ≥ 0 meaning that x ∈ [0,∞)

Therefore, SS = (−∞, 2] ∩ [−6,∞) ∩ [0,∞) = [0, 2]
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8

Modular Functions

8.1. Introduction

We now look at another type of function called the modular function. Let us have some basic
de�nation

De�nition 8.1.1. The modulus of a real number x ∈ R denoted |x| is de�ned as

|x| =
{
x if x ≥ 0;
−x if x < 0.

The modulus of a number is just the absolute value of that number. The following examples
show the meaning of a modulus.

Example 8.1.1. The modulus of 2 is denoted by |2|. By de�nition, |2| = 2 since 2 > 0

The modulus of −2 is denoted by | − 2|. By de�nition, | − 2| = −(−2) = 2 since −2 < 0

Example 8.1.2. Determine the following;

i) | − 10| ii)
∣∣−2

7

∣∣ iii) |0.356| iv)
∣∣√2∣∣ v)

∣∣−√2∣∣ vi) |0| vii) |10|

Sol:

i) | − 10| = −(−10) = 10 ii)
∣∣−2

7

∣∣ = −(−2
7
) = 2

7
iii) |0.356| = 0.356

iv)
∣∣√2∣∣ = √2 v)

∣∣−√2∣∣ = − (−√2) = √2 vi) |0| = 0

vi) |10| = 10

NOTE: For any real number x ∈ R, | − x| = |x|

Example 8.1.3. Evaluate the following expressions

i) |2−7|+|3−1| ii) ||−3|−|−9|| iii) ||2−6|−|1−9|| iv) |3−6|−|−2+4|+|−2−3|

Sol: Exercise
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Having de�ned the modulus of a real number, we can extend the de�nition to the real valued
functions.

De�nition 8.1.2. Let f(x) be a real valued function. The modulus of f(x) denoted by |f(x)|
is de�ned as

|f(x)| =
{
f(x) if f(x) ≥ 0;
−f(x) if f(x) < 0.

Example 8.1.4. If f(x) = x + 2, then |f(x)| = |x + 2|. Similarly, if f(x) = tanx, then
|f(x)| = | tanx|.

8.2. Graphs of Modular Functions

We now look at graphs of the Modular functions. To sketch the graph of y = |f(x)| + d, the
following steps can be taken:

• sketch the graph of y = f(x)

• re�ect the negative part of y = f(x) in the X−axis.

• outline the positive part only, to get the graph of y = |f(x)|

• shift the graph of y = |f(x)|, d units up if d > 0 to obtain y = |f(x)|+ d.

• shift the graph of y = |f(x)|, d units down if d < 0 to obtain y = |f(x)|+ d.

Example 8.2.1. Sketch the graph of y = |x|. Hence or otherwise, state the domain and the
range of this function.

Sol: This graph is obtained by re�ecting the negative part of y = x in the x−axis. The graph
is shown below.

−4 −2 2 4

2

4

6

x

y

From the graph, Df = (−∞,∞) and Rf = [0,∞)
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Example 8.2.2. Sketch the graph of y = |2x + 1|. Hence or otherwise, state the domain and
the range of this function.

Sol: We need to determine the points where the graph cuts the x−axis and the y−axis.

When x = 0, we get y = 1 so that the graph cuts the y−axis at y = 1.

When y = 0, then x = −1
2
. Therefore, the graph is given by.

−4 −2 2 4

2

4

6

8

x

y

From the graph, Df = (−∞,∞) and Rf = [0,∞)

Example 8.2.3. Sketch the graph of y = |x − 2| + 1. Hence or otherwise, state the domain
and the range of this function.

Sol: The graph is shown below.

2

1

3

x

y

From the graph, Df = (−∞,∞) and Rf = [1,∞)

Example 8.2.4. Sketch the graph of y = 2 − |x + 1|. Hence or otherwise, state the domain
and the range of this function.

Sol: The graph is shown below. To determine the x−intercepts, solve the equation 2−|x+1| =
0, and verify that x = 1 and x = −3
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−1

1

2

x

y

From the graph, Df = (−∞,∞) and Rf = (−∞, 2]

Example 8.2.5. Sketch the graph of y = |2x2 − 7x + 5|. Hence, state the domain and the
range of the function.

Sol: We start with the graph of y = 2x2−7x+5, then re�ect the negative part in the X−axis.

a = 2, b = −7 and c = 5. Since a > 0, it is cup-shaped. It cuts the y-axis at y = 5. The
minimum point is

(
7
4
,−9

8

)
2x2 − 7x+ 5 = 0 =⇒ (2x− 5)(x− 1) = 0 =⇒ x = 1 and x = 5

2
are the roots.

1

x

y

From the graph, we have Df = (−∞,∞) and Rf = [0,∞)

Example 8.2.6. Given f(x) =
∣∣ 3
x−1

∣∣,
i) �nd the domain of f

ii) �nd the range of f

iii) sketch the graph of f

iv) Write down the equation of the asymptotes, if any.

Sol: Exercise
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8.3. Equations and Inequality

Let us now discuss equations involving Modulus. The following examples show the technique
involved

Example 8.3.1. Solve the equation |2x− 1| = 4

Sol: we square both sides to get rid of the modulus sign.

|2x− 1| =4

(2x− 1)2 =42

(2x− 1)2 − 42 =0

(2x− 1− 4)(2x− 1 + 4) =0

(2x− 5)(2x+ 3) =0

Hence, 2x− 5 = 0 =⇒ x = 5
2
or 2x+ 3 = 0 =⇒ x = −3

2

SS =

{
−3

2
,
5

2

}

Example 8.3.2. Solve the following equation |x+ 3| = |x− 1|

Sol: Again, we square both sides to get rid of the modulus sign.

|x+ 3| =|x− 1|
(x+ 3)2 =(x− 1)2

x2 + 6x+ 9 =x2 − 2x+ 1

8x =− 8

x =− 1

Hence, x = −1 so that
SS = {−1}

Example 8.3.3. Solve the modular equation |x+ 1| = 4

Sol: |x+1| = 4 implies that x+1 = ±4. Hence, x+1 = 4 =⇒ x = 3 or x+1 = −4⇒ x = −5.
Hence,

SS = {−5, 3}

Example 8.3.4. Solve the equation |x3 − 2x2 + 5x− 11| = −2

Sol: Exercise
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Example 8.3.5. Solve the modular equation |x+ 1| = |x| − |x− 1|.

Sol: we square more than once to get rid of the modulus sign.

|x+ 1| =|x| − |x− 1|
|x+ 1|+ |x− 1| =|x|

(|x+ 1|+ |x− 1|)2 =|x|2

(x+ 1)2 + 2|x+ 1||x− 1|+ (x− 1)2 =x2

x2 + 2x+ 1 + 2|x+ 1||x− 1|+ x2 − 2x+ 1 =x2

2|(x+ 1)(x− 1)| =− x2 − 2

(2|(x+ 1)(x− 1)|)2 =(−x2 − 2)2

4
(
x2 − 1

)2
=(−1)4

(
x2 + 2

)2
4
(
x2 − 1

)2
=
(
x2 + 2

)2
4x4 − 8x2 + 4 =x4 + 4x2 + 4

3x4 − 12x2 =0

x4 − 4x2 =0

x2(x2 − 4) =0

x2(x− 2)(x+ 2) =0

This means that either x2 = 0 =⇒ x = 0 or x − 2 = 0 =⇒ x = 2 or x + 2 = 0 =⇒ x = −2
Check that substituting any of these values into the equation, does not make the equation valid.
Hence,

SS = ∅

Example 8.3.6. Solve the inequality |2x− 1| < 2

Sol: we square both sides to get rid of the modulus sign.

|2x− 1| < 2

(2x− 1)2 <22

(2x− 1)2 − 22 <0

(2x− 1− 2)(2x− 1 + 2) <0

(2x− 3)(2x+ 1) <0

Critical values: x = 3
2
and x = −1

2

−∞ < x < −1
2
−1

2
< x < 3

2
3
2
< x <∞

2x− 3 − − +

2x+ 1 − + +

(2x− 3)(2x+ 1) + − +

SS =

{
x| − 1

2
< x <

3

2
, x ∈ R

}
=

(
−1

2
,
3

2

)
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Example 8.3.7. Solve the inequality |2x+ 1| < −4

Sol: Recall that a modulus is never negative. Therefore, the solution set to |2x + 1| < −4 is
empty. Hence

SS = ∅

Example 8.3.8. Solve the inequality |2x+ 1| ≥ |x− 1|

Sol: We square both sides to get rid of the modulus sign.

|2x+ 1| ≥|x− 1|
(2x+ 1)2 ≥(x− 1)2

4x2 + 4x+ 1 ≥x2 − 2x+ 1

3x2 + 6x ≥0
x2 + 2x ≥0
x(x+ 2) ≥0

Critical Values: the critical values are x = 0 and x = −2

−∞ < x < −2 −2 < x < 0 0 < x <∞

x − − +

x+ 2 − + +

x(x+ 2) + − +

SS = (−∞,−2] ∪ [0,∞)

Exercise

1. De�ne the following:

a) function b) Domain of a function c) Range of a function d) Composite function

v) An inverse of a function (vi) An odd function (vii) A bijective function

2. a) For each of the following functions, state the domain and where possible, the range:

i) f(x) = 1
x

(ii) f(x) = −2
x+1

(iii) f(x) = x+4
x−5 (iv) f(x) = 4x+1

x
(v) f(x) = 1

x+2
+2

vi) f(x) = 5
x2−5x−6 (vii) f(x) = x

x2−x−2 (viii) f(x) = x2

x2−4 (ix) f(x) = 2x2+1
x

b) For each function in 2(a), sketch the graphs indicating the intercepts, vertical asymp-
totes, horizontal asymptotes and slant asymptotes if they exist.

3. If f(x) = 2x+ 3 and g(x) = 3x− 5, �nd

a) (f◦g)−1(x) b) (f−1◦g−1)(x) c) (g−1◦g−1)(x) d) (g−1◦f−1)(x)
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4. Find the values of k for which f(k) = f(1), where f(x) is given by f(x) = x+1
x2−x+1

5. Let f(x) = x2 + x − 3. Find f(x + h), h is a constant. Hence express f(x+h)−f(x)
h

in its
simplest form.

6. Sketch the graphs of the following functions and state the range in each case:

a) y =

{
x, x ≤ 0;
x2, x > 0.

b) y =

{
7− x if x ≤ 2;
4x− 3 if x > 2.

c) f(x) =


−x− 2 if x < −1

3
;

5x if −1
3
≤ x ≤ 1

2
;

x+ 2 if x > 1
2
.

7. Let f : x→ 3
x2−4 and h : x→ 3x− 1. State the domains of f and h. Find:

a) f−1(x) b) h−1(x) c) foh(x) d) (hof)−1(x) e) domain and range of foh(x)

8. Let g(x) =

{
1− 2x if x ≤ −1;
x2 − 2 if x > −1.

i) Find g(−3), g(−1) and g(1) (ii) Find the values of a for which g(a) = 14.

iii) Sketch the graph of g(x) and state its range

9. For each of the following functions, state whether the function is odd, even or neither.

a) f(x) = x2 + 2 b) f(x) = x3 b) f(x) = x2 + 10x+ 9 c) f(x) = |x| d) f(x) = 1
x2

10. The function f is de�ned as f(x) = 1
x+2

, x ∈ R, x 6= −2 . Further, g is another function
de�ned as g(x) = x− 3 x ∈ R. Find:
i)f−1(x) (ii) g−1(x) (iii) fog(x) (iv) (gof)−1(x) (v) domain and range of fog(x)

11. Sketch the graphs of the following modulus functions and state the range in each case:

a)f(x) = −|x|+ 2 b)f(x) = |(x+ 1)(2− x)| c)f(x) = |x2 + 6x+ 5| d)f(x) = |x− 2|
e)f(x) = −|4− x|+ 2 f)f(x) = |x3| g)f(x) = | 1

x
| h)f(x) = |x− 2|

12. State the domain and sketch the graphs of the following functions involving radicals.
State the range:

a)f(x) =
√
x− 1 b)f(x) = 3+

√
2− x c)f(x) = −1+

√
−x− 2 d)f(x) = 2−

√
1 + x

e)f(x) =
√
x2 − x− 2 f)f(x) =

√
x2 − 4 g)f(x) = −2−

√
−x h)f(x) =

√
x+ 5

13. Solve each of the following equations:

i) |x− 2| = 6 (ii) | − 2x− 1| = 6 (iii) |5x+ 4| = 3− 7x (iv) |2x+ 1| = |4x− 3|
v) |x2 − 4x| = 8− 4x (vi) | −2

x+3
| = 5 (vii) |x+1

x−2 | = 3 (viii) f(x) = |x2 − 4| = 2

14. Solve each of the following equations:

a)
√
2x− 1 + 2 = x (b)

√
2x− 1−

√
x+ 3 = 1 (c)

√
6x+ 7−

√
3x+ 3 = 1

d) x√
x+1

+ 2x√
x+5

= 0 (e)
√
x− 2−

√
2x− 11 =

√
x− 5 (f)

√
1 + 2

√
x =
√
x+ 1

15. Solve each of the following inequalities:

a) |6x−11| < 2 (b) |2x+3| ≥ 4 (c) |x+1
x−2 | < 5 (d) |2x+1| > |x−1| (e) |x+6| < |x−2|

f) |3x+1| < −3 (g) |−3x2+x−5| < 0 (h)
√
x− 3 >

√
x+ 4−1 (i)

√
x+ 1 ≤ −1
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16. Solve each of the following inequalities involving radicals:

a) 10−
√
2x+ 7 ≤ 3 b)

√
2−
√
x+ 6 ≤ −

√
x c) 1√

x
< 2√

x+27
d)
√
2x+ 9−

√
9 + x > 0

17. Find the partial fraction decomposition for the following fractions

a) 20x−3
6x2+7x−3 (b) −9x

2+7x−4
x3−3x2−4x (c) 3x+7

(x+1)(x+2)(x+3)
(d) 8x2+15x+12

(x2+4)(3x−4) (e) x2+1
x2(2x+1)

(f) 2
(2−x)(x+1)2

g) x
(x+1)(x2+2x+2)

h)x
3−3x2−3x−5

x2−4 (i) x3

x3−1 (j) x2+1
x2−1 (k) 4x2+6x−10

(x+3)(x2+x+2)
(l) x2

(x−1)(x+2)2

18. Find the roots of each quadratic equation subject to the given conditions:

(a) (2k + 2)2x2 + (4− 4k)x+ k − 2 = 0 has roots which are reciprocals of each other

(b) kx2 − (1 + k)x+ 3k + 2 = 0 has the sum of its roots equal to twice the product of
its roots

(c) (x+ k)2 = 2− 3k has equal roots

19. Find two numbers whose sum is 10 and whose product is as large as possible

20. The function f is de�ned as f(x) = 1
x+2

, x ∈ R, x 6= −2 . Further, g is another function
de�ned as g(x) = x− 3 x ∈ R. Find:

(i) f−1(x) (ii) g−1(x) (iii) fog(x) (iv) (gof)−1(x) (v) domain and
range of fog(x)

21. a) Solve the following quadratic equations:

(i) 2x2− 3x− 1 = 0 (ii) 2x2− 3x+4 = 0 (iii) x2+6x+5 = 0 (iv) x2+1 = 0

(v) 2x2−3 = 0 (vi) x2−9x−10 = 0 (vii) 5x2 = 7x−13 = 0 (viii) 9−x2 = 0

b) For each quadratic in (a), determine the type of roots and sketch their graphs.

22. For what range of values of p, does the equation x2 − (p+ 2)x+ p2 + 3p = 3 have real
roots?

23. If the equation x2 + 3 = k(x+ 1) has real roots, �nd the range of values of k

24. Find the solution sets to the following inequalities

(i) 2x2 − 3x − 1 ≤ 0 (ii) 2x2 + 3x − 5 ≥ 0 (iii) 2x2 − 4x − 3 < 0 (iv)
x2 − x− 6 > 0

(v) 2x2−3 ≤ 0 (vi) x2−9x−10 ≥ 0 (vii) 2x+1 ≤ 13x−60 (viii) x2+16 ≤ 0

25. Determine the remainder when x3 + 2x2 − x− 1 is divided by

(i) x−1 (ii) 2x+1 (iii) x+1 (iv) x+2 (v) 3x+1 (vi) x+3 (vii)
2x− 1

26. a) Factorise completely each of the following:

(i) x3− 2x2− 5x+6 (ii) x3+x2− 4x− 4 (iii) 6x3− 13x2+9x− 2 (iv) x4− 1

(v) 4x3 − 8x2 − x+ 2 (vi) 3x3 + 3x2 − 3x− 2 (vii) x3 − 2x2 + 4x− 1 (viii)
x3 + 2
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27. a) Solve the following polynomial equations:

(i) x3 − 3x2 − 11x + 15 = 0 (ii) x4 − 2x2 + 1 = 0 (iii) 4x3 − 8x2 − x + 2 = 0
(iv) x3 − 1 = 0

(v) 2x2−3 = 0 (vi) x2−9x−10 = 0 (vii) 5x2 = 7x−13 = 0 (viii) 9−x2 = 0

28. a) Solve the following polynomial inequalities:

(i) x3 − 3x2 − 11x + 15 ≤ 0 (ii) x4 − 2x2 + 1 > 0 (iii) 4x3 − 8x2 − x + 2 ≤ 0
(iv) x3 − 1 ≤ 0

(v) x2(2x+1) ≤ 3x− 60 (vi) 4x3− 12x2− 5x+6 < 0 (vii) 5x2 = 7x− 13 ≥ 0

29. Sketch the graphs of the following:

(i) f(x) = (x−1)(x+2)(x−3) (ii) f(x) = x4−2x2+1 (iii) p(x) = 4x3−8x2−x+2
(iv)x3 + 2

(v) h(x) = x3 + 3x2 + 2x (vi) k(x) = 2x3 + 3x2 − 3x − 2 (vii) g(x) =
(x− 2)(2x− 1)(2x+ 1)

30. Find in terms of p, the remainder when 3x3 − 2x2 + px− 6 is divided by x+ 2. Hence,
write down the value of p for which the expression is exactly divisible by x+ 2

31. Given that the expression x3 + ax2 + bx+ c leaves the same remainder when divided by
x− 1 or x+ 2, show that a− b = 3

32. If 4x3 − 11x2 − 6x+ 7 = (Ax+B)(x+ 1)(x− 3) +C for all values of x, evaluate A, B
and C.

33. The expression f(x) = 3x3 + 2x2 − px+ q is divisible by x− 1, but leaves a remainder
of 10 when divided by x+ 1. Find the values of p and q.

34. The polynomial f(x) = A(x−1)2+(x+2)2 is divided by x+1 and x−2. The remainders
are 3 and −15 respectively. Find the values of A and B.
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9

Trigonometric Functions

9.1. Introduction

Trigonometry is the branch of mathematics which deals with the measurement of sides and an-
gles of triangles, and their relationship with each other. We will be interested in the relationship
that exists between the sides and the angle of a triangle.

De�nition 9.1.1. An angle is a measure of rotation which is measured either in degrees or in
radians.

Note 9.1.1. The following angles are worth noting

• A quarter turn is called a right angle and is 90◦

• A half turn is an angle on a straight line and is 180◦

• A complete turn is a full circle and is 360◦

• An angle read in anticlockwise is positive and an angle read in clockwise is negative

x

y
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Angles and Quadrants

A complete circle is divided into four quadrants:

1. First Quadrant: Angles in the �rst quadrant are between 0◦ and 90◦ moving in the
positive direction. Thus, if x is an angle in the �rst quadrant, then 0◦ ≤ x ≤ 90◦

2. Second Quadrant: Angles in the second quadrant are between 90◦ and 180◦ moving in
the positive direction. Thus, if x is an angle in the second quadrant, then 90◦ < x ≤ 180◦

3. Third Quadrant: Angles in the third quadrant are between 180◦ and 270◦ moving in
the positive direction. Thus, if x is an angle in the third quadrant, then 180◦ < x ≤ 270◦

4. Fourth Quadrant: Angles in the fourth quadrant are between 270◦ and 360◦ moving in
the positive direction. Thus, if x is an angle in the fourth quadrant, then 270◦ < x ≤ 360◦

If x is a positive angle and we add multiples of 360◦ to x, the resulting new angle will be in the
same quadrant as x. For example, if x = 36◦ and y = 36◦ + (360k)◦, then y is an angle in the
�rst quadrant.

Similarly, if x is a negative angle and we subtract multiples of 360◦ from x, the resulting angle
will be in the same quadrant as x. For example, if x = −36◦ and y = −36◦ − (360k)◦, then y
is an angle in the fourth quadrant.

Note 9.1.2. Suppose we want to know the quadrant in which a given angle, say t◦ is. Then,
we could proceed as follows:

• determine k = t
360

, where k is the value of the integer part.

• determine x = t− 360k, if t is either positive or negative.

• the evaluated angle x will be between 0◦ and 360◦. ie, 0◦ ≤ x ≤ 360◦ if t is positive, and
x will be between −360◦ and 0◦. ie, −360◦ ≤ x ≤ 0◦ if t is negative

• Finally, the required quadrant of t◦ is just the quadrant of x.

Example 9.1.1. Determine the quadrant of angle a) 711◦ b) 8220◦ c) −420◦ iv) −1070◦

Sol:

i) 711
360

= 1.975. Hence, k = 1. Since 711 is positive, we take x = 711− 360(1) = 351 which is in
the fourth quadrant. Hence, we conclude that 711◦ is also in the fourth quadrant.

ii) 820
360

= 2.278. Hence, k = 2. Since 820 is positive, we take x = 820 − 360(2) = 100 which is
in the second quadrant. Hence, we conclude that 820◦ is also in the second quadrant.

iii) −420
360

= −1.167. Hence, k = −1. Since −420 is negative, we take x = −420−360(−1) = −60
which is in the fourth quadrant. Hence, we conclude that −420◦ is also in the fourth quadrant.

iv) −1070
360

= −2.972. Hence, k = −2. Since −1070 is negative, we take x = −1070− 360(−1) =
−350 which is in the �rst quadrant. Hence, we conclude that−1070◦ is also in the �rst quadrant.
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Radian Measure

A radian is a measure of the angle at the centre of the circle making an arc of length r on the
circumference of the circle with radius r.

• 1 Radian = 180◦

π

• 1◦ = π
180

Radians

Example 9.1.2. Convert the following degrees into radians a) 60◦ b) −120◦ c) 180◦

Sol: Using the formula 1 Radian = 180◦

π
, we have

60◦ = 60× π
180

= π
3
radians

−120◦ = −120× π
180

= −2π
3
radians

180◦ = 180× π
180

= π radians

Example 9.1.3. Convert the following radians to degrees a) 2π b) −π
4

c) 2π
3

Sol: Using the formula 1◦ = π
180

Radians, we have

2π = 2π × 180
π

= 360◦

−π
4
= −π

4
× 180

π
= −45◦

2π
3
= 2π

3
× 180

π
= 120◦

9.2. Trigonometric Functions

Consider the triangle in the �rst quadrant below with point (x, y) on the circumference of a
circle with radius r.

x

y

From the diagram above, |OA| = x, |OB| = r, |AB| = y and AÔB = θ Then we have
the following:
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1. The Sine Function: The sine of an angle θ is the ratio of the length of the opposite
side, to that of the hypotenuse side. Thus, from our �gure above,

sin θ =
y

r

2. The Cosine Function: The cosine of an angle θ is the ratio of the length of the adjacent
side, to that of the hypotenuse side. Thus, from our �gure above,

cos θ =
x

r

3. The Tangent Function: The tangent of an angle θ is the ratio of the length of the
opposite side, to that of the adjacent side. Thus, from our �gure above,

tan θ =
y

x

4. The Secant Function: The secant of an angle θ is the ratio of the length of the
hypotenuse , to that of the adjacent side. Thus, from our �gure above,

sec θ =
y

x

5. The Cosecant Function: The cosecant of an angle θ is the ratio of the length of the
hypotenuse, to that of the opposite side. Thus, from our �gure above,

csc θ =
r

y

6. The Cotangent Function: The cotangent of an angle θ is the ratio of the length of the
adjacent side, to that of the opposite side. Thus, from our �gure above,

cot θ =
x

y

Note 9.2.1. From the de�nitions above, we notice the following:

i) sec θ = 1
cos θ

ii) csc θ = 1
sin θ

iii) cot θ = 1
tan θ

iv) tan θ = sin θ
cos θ

v) cot θ = cos θ
sin θ

Example 9.2.1. Consider the triangle below. Find all the trigonometric functional values of θ

x

y
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Sol: From the �gure above, we can see that

sin θ =
3

5
cos θ =

4

5
tan θ =

3

4
csc θ =

5

3
sec θ =

5

4
cot θ =

4

3

Example 9.2.2. Consider the triangle in the second quadrant. Find all the trigonometric
functional values of θ

x

y

Sol: From the �gure above, we can see that

sin θ =
3

5
cos θ = −4

5
tan θ = −3

4
csc θ =

5

3
− sec θ =

5

4
cot θ = −4

3

Example 9.2.3. Consider the triangle below, that is in the third quadrant. Find all the
trigonometric functional values of θ

x

y

Sol: From the �gure above, we can see that

sin θ = −3

5
cos θ = −4

5
tan θ =

3

4
csc θ = −5

3
sec θ = −5

4
cot θ =

4

3

Example 9.2.4. Consider the triangle that is in the fourth quadrant. Find all the trigonometric
functional values of θ
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x

y

Sol: From the �gure above, we can see that

sin θ = −3

5
cos θ =

4

5
tan θ = −3

4
csc θ = −5

3
sec θ =

5

4
cot θ = −4

3

Trigonometric Functions and Quadrants

The above examples give us some interesting results, which we can now generalize:

• All the six trigonometric functions are positive in the �rst quadrant

• Only the sine and cosec functions are positive in the second quadrant

• Only the tangent and cotangent functions are positive in the third quadrant

• Only the cosine and sec functions are positive in the fourth quadrant

Therefore, each function is positive in the �rst and one other quadrant, and negative in the
other two quadrants.

Example 9.2.5. Find the quadrant containing the terminal side of θ if sin θ < 0 and sec θ > 0

Sol: Since sin θ < 0, the quadrant is either the third or the fourth. Further, since sec θ > 0,
then the quadrant must be the fourth. Hence, the terminal side of θ lies in the fourth quadrant

Example 9.2.6. If the terminal side of θ is in the second quadrant, �nd all the trigonometric
functional values given that cos θ = −1

2
:

Sol: First, we sketch the triangle in the second quadrant as shown below.
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x

y

From pythagoras theorem, we can see that y2 = 22 − 11 = 3. Hence, y =
√
3.

sin θ =

√
3

2
tan θ = −

√
3

1
= −
√
3 csc θ =

2√
3

sec θ = −2

1
= −2 cot θ = − 1√

3

Common Angles

The angles 0◦, 30◦, 45◦, 60◦, 90◦, 180◦, 270◦ and 360◦ are called the common,
standard or special angles. Their trigonometric functional values must be known as they are
often applied. The table below summarises the trigonometric functional values of these special
angles.

θ in degrees θ in radians sin θ cos θ tan θ

0◦ 0 0 1 0

30◦ π
6

1
2

√
3
2

1√
3

45◦ π
4

√
2
2

√
2
2

1

60◦ π
3

√
3
2

1
2

√
3

90◦ π
2

1 0 unde�ned

180◦ π 0 −1 0

270◦ 4π
3

−1 0 unde�ned

360◦ 2π 0 1 0

Example 9.2.7. Calculate i) cos 300◦ ii) cot(−135◦) iii) sin 405◦ iv) cos(−420◦)

Sol: We use the special angles
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i) Angle 300◦ lies in the fourth quadrant. Hence cos 300◦ is positive. Thus,

cos 300◦ =cos(360◦ − 300◦)

= cos 60◦

=
1

2

ii) Angle −135◦ lies in the third quadrant. Hence cot(−135◦) is positive. Thus,

cot−135◦ =cot(180◦ − 135◦)

= cot 45◦

=1

iii) Angle 405◦ lies in the �rst quadrant. Hence sin 405◦ is positive. Thus,

sin 405◦ =sin(405◦ − 360◦)

= sin 45◦

=

√
2

2

iv) Angle −420◦ lies in the fourth quadrant. Hence cos(−420)◦ is positive. Thus,

cos(−420)◦ =cos(420◦ − 360◦)

= cos 60◦

=
1

2

9.2.1 Trigonometric Identities

We have seen that x
r
= cos θ and that y

r
= sin θ. This gives x = r cos θ and y = r sin θ. Using

the Pythagoru's Theorem, we have

r2 =x2 + y2

=(r cos θ)2 + (r sin θ)2

=r2 cos2 θ + r2 sin2 θ

=r2(cos2 θ + sin2 θ)

Dividing both sides by r2 gives

cos2 θ + sin2 θ = 1 (i)

Dividing both sides of equation cos2 θ + sin2 θ = 1 by cos θ, we have

cos2 θ + sin2 θ =1

cos2 θ

cos2 θ
+

sin2 θ

cos2 θ
=

1

cos2 θ
1 + tan2 θ =sec2 θ
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Hence, we have another identity:

sec2 θ = 1 + tan2 θ (ii)

Dividing both sides of equation cos2 θ + sin2 θ = 1 by sin θ, we have

cos2 θ + sin2 θ =1

cos2 θ

sin2 θ
+

sin2 θ

sin2 θ
=

1

sin2 θ
cot2 θ + 1 =csc2 θ

Hence, we have the identity:

csc2 θ = 1 + cot2 θ (iii)

Let α and β denote two angles, then the following identities hold:

cos(α + β) = cosα cos β − sinα sin β (iv)

cos(α− β) = cosα cos β + sinα sin β (v)

sin(α + β) = sinα cos β + sin β cosα (vi)

sin(α− β) = sinα cos β − sin β cosα (vii)

From identity (iv), we obtain

cos(α + α) = cosα cosα− sinα sinα

=cos2 α− sin2 α

Hence, cos 2α =cos2 α− sin2 α (viii)

From identity (vi), we obtain

sin(α + α) = sinα cosα + sinα cosα

=2 sinα cosα

Hence, sin 2α =2 sinα cosα (ix)
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If α and β are two angles, then

tan(α + β) =
sin(α + β)

cos(α + β)

=
sinα cos β + sin β cosα

cosα cosα− sinα sinα

=
sinα cos β + sin β cosα

cosα cosα− sinα sinα
× cosα cos β

cosα cos β

=

sinα cosβ
cosα cosβ

+ sinβ cosα
cosα cosβ

cosα cosβ
cosα cosβ

− sinα sinβ
cosα cosβ

=
tanα + tan β

1− tanα tan β

Therefore, we have the identity: tan(α + β) =
tanα + tan β

1− tanα tan β
(x)

Similarly, we can show that: tan(α− β) = tanα− tan β

1 + tanα tan β
(xi)

From the identity (x), we have tan 2α =
2 tanα

1− tan2 α
(xii)

Example 9.2.8. Evaluate i) cos 75◦ ii) sin 75◦ iii) tan 75◦ ii) sec 75◦

Sol:

i) Using the identity cos(α + β) = cosα cos β − sinα sin β with α = 30◦ and β = 45◦, we have

cos(75◦) = cos(30◦ + 45◦)

= cos 30◦ cos 45◦ − sin 30◦ sin 45◦

=

(√
3

2

)(√
2

2

)
−
(
1

2

)(√
2

2

)

=

√
6

4
−
√
2

4

=

√
6−
√
2

4
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ii) Using the identity sin(α+ β) = sinα cos β + cosα sin β with α = 30◦ and β = 45◦, we have

sin(75◦) = sin(30◦ + 45◦)

= sin 30◦ cos 45◦ + cos 30◦ sin 45◦

=

(
1

2

)(√
2

2

)
+

(√
3

2

)(√
2

2

)

=

√
2

4
+

√
6

4

=

√
2 +
√
6

4

iii) Using the identity (x) with α = 30◦ and β = 45◦, we have

tan(75◦) = tan(30◦ + 45◦)

=
tan 30◦ + tan 45◦

1− tan 30◦ tan 45◦

=

1√
3
+ 1

1−
(

1√
3

)
(1)

=

√
3+3
3

3−
√
3

3

=2 +
√
3

Example 9.2.9. Evaluate and leave the answer in surd form: i) cos 7π
6

ii) tan
(
−5π

3

)
Sol:

i) Note that 7π
6
= (3+4)π

6
= π

2
+ 2π

3
so that

cos
7π

6
= cos

(
π

2
+

2π

3

)
=cos

π

2
cos

2π

3
− sin

π

2
sin

2π

3

=(0)(cos
2π

3
)− (1)(sin

2π

3
)

=− sin
2π

3

=−
√
3

2
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ii) Verify that −5π
3
= −π − 2π

3
= (−π) + (−2π

3
) so that

tan

(
−5π

3

)
=tan

(
(−π) + (−2π

3
)

)
=

tan(−π) + tan(−2π
3
)

1− tan(−π) tan(−2π
3
)

=
0− tan 2π

3

1− (0) tan(−2π
3
)

= tan−2π

3

= tan

(
π − 2π

3

)
=tan

π

3

=
√
3

Example 9.2.10. Verify that sin(α + π) = − sinα, where α ∈ R

Sol: Use the identity (vi)

sin(α + π) = sinα cosπ + cosα sin π

=(sinα)(−1) + (cosα)(0)

=− sinα + 0

=− sinα

Hence, shown.

We can rewrite certain trigonometric functions using the above discussed identities

Example 9.2.11. Prove the identity sinx cotx = cosx

Sol: Pick the side that is more complex than the other

L.H.S =sinx cotx

=sinx
cosx

sinx
=cosx = R.H.S

Example 9.2.12. Prove the identity (1 + tan2 x)(1− sin2 x) = 1

Sol: Picking the left hand side,

L.H.S =(1 + tan2 x)(1− sin2 x)

=(sec2 x)(cos2 x)

=(
1

cos2 x
)(cos2 x)

=1 = R.H.S
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Example 9.2.13. Prove the identity (csc θ − cot θ)2 = 1−cos θ
1+cos θ

Sol: We start with the L.H.S

L.H.S =(csc θ − cot θ)2

=

(
1

sin θ
− cos θ

sin θ

)2

=

(
1− cos θ

sin

)2

=
(1− cos θ)2

sin2 θ

=
(1− cos θ)(1− cos θ)

1− cos2 θ

=
(1− cos θ)(1− cos θ)

(1− cos θ)(1 + cos θ)

=
1− cos θ

1 + cos θ
= R.H.S

9.2.2 Trigonometric Equations

We can solve equations involving basic trigonometric functions, such as cosx = k where x ∈ R,
using the following steps:

• �nd the �rst quadrant angle α for which cosα = |k|.

• �nd the quadrants in which x will lie

• then determine the corresponding angles for those quadrants

A basic equation will usually have two solutions for 0 ≤ x ≤ 2π. If the angles are in degrees,
they should be read correct to one decimal place.

Example 9.2.14. Solve for x in the equation
√
2 sinx = 1 were 0 ≤ x ≤ 2π

Sol: Write
√
2 sinx = 1 as sinx = 1√

2
. Get α in the �rst quadrant such that sinα = | 1√

2
| = 1√

2
.

Verify that α = π
4
since sin π

4
= 1√

2
. Now, since sinx = 1√

2
means that the sine function is

positive, the angle xmust be in the �rst and second quadrants. Hence, x = π
4
and x = π−π

4
= 3π

4

Hence, the solution set is: SS = {π
4
,
3π

4
}

Example 9.2.15. solve the equation tan2 x− 1 = 0 where 0◦ ≤ x ≤ 360◦
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Sol: We have (tanx− 1)(tanx+ 1) = 0. Hence, tanx = 1 or tanx = −1

For tanx = 1, we get x = 45◦, 225◦. For tanx = −1, we have x = 135◦ and x = 315◦

Hence, the solution set is: SS = {45◦, 135◦, 225◦, 315◦}

Example 9.2.16. Solve the equation 2 sinx− tanx = 0 for 0 ≤ x ≤ 2π

Sol: We have 2 sinx− sinx
cosx

= 0 so that 2 cosx sinx− sinx = 0. Factorising gives sinx(2 cosx−
1) = 0. Hence, sinx = 0 or cosx = 1

2
.

From sinx = 0, we obtain x = 0, π, and 2π. From cosx = 1
2
, we obtain x = π

3
and 5π

3

Hence, the solution set is: SS =

{
0,

π

3
, π,

5π

3
, 2π

}

Example 9.2.17. solve for θ given the equation cos θ = sin 2θ , where 0 ≤ θ ≤ 2π:

Sol: We can rewrite as cos θ = 2 sin θ cos θ so that we obtain cos θ(1 − 2 sin θ) = 0. Hence,
cos θ = 0 or sin θ = 1

2

From cos θ = 0, we obtain θ = π
2
and 3π

2
.

From sin θ = 1
2
, we obtain θ = π

6
and θ = 5π

6

Hence, the solution set is: SS =

{
π

6
,
5π

6
,
π

2
,
3π

2

}

Example 9.2.18. Solve the equation 2 sin2 θ − cos θ − 1 = 0 for 0 ≤ θ ≤ 2π

Sol: We rewrite as 2(1− cos2 θ)− cos θ − 1 = 0 so that 2 cos2 θ + cos θ − 1 = 0. Let cos θ = y.
Then we have a quadratic equation 2y2 + y − 1 = 0 verify that solving this quadratic gives

(2y − 1)(y + 1) = 0 so that y = −1 or 1
2
. Thus, cos θ = −1 and cos θ = 1

2
.

From cos θ = −1, we get θ = π only.

From cos θ = 1
2
, we get θ = π

3
and θ = 5π

3

Hence, the solution set is: SS =

{
π

3
, π,

5π

2

}

Note 9.2.2. Expressions of the form a cosx+ b sinx where a, b ∈ R can be written as

r cos(x+ α) or r sin(x+ α)

where α ∈ R and r ∈ R+
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Example 9.2.19. Express f(θ) = sin θ − cos θ in the form f(θ) = r cos(θ + α). Hence or
otherwise, solve the equation sin θ − cos θ = 1

Sol: Let sin θ − cos θ = r cos(θ + α). Then we expand the R.H.S so that

sin θ − cos θ =r cos(θ + α)

sin θ − cos θ =r cos θ cosα− r sin θ sinα
Hence, 1 =− r sinα (i)

and, − 1 =r cosα (ii)

Solving (i) and (ii) simultaneously, gives r =
√
2 and α = 5π

4
. Hence, f(θ) =

√
2 cos(θ + 5π

4
)

sin θ − cos θ =1

√
2 cos

(
θ +

5π

4

)
=1

cos

(
θ +

5π

4

)
=

1√
2

Hence, θ + 5π
4
= π

4
, 2π − π

4
, π
4
+ 2π, · · · . Hence, θ = π

2
, π since we need 0 ≤ θ ≤ 2π

9.3. Graphs of Trigonometric Functions

Let x be a random measure, we examine the graphs of sinx, cosx and tanx. The graphs of these
trigonometric functions are periodic functions. Below are the graphs of the basic trigonometric
functions

1
x

y

1
x

y

Amplitude, Period and Phase Shift

Let f(x) = A sin(Bx+ C) + D denote the standard trigonometric function. Then

• |A| is called the amplitude of the function. This is the maximum displacement from a
given �xed line, usually the line y = 0

• The period of a periodic function is the interval required for one complete cycle. The
period, P = 2π

B
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• The Phase Shift or horizontal shift is given as −C
B
. It determines the units required for

the horizontal shifting of the graph.

• The vertical shift is given by the value of D.

Example 9.3.1. Sketch the graph of f(x) = 2 sin(x+ π
2
) on the interval [−2π, 2π]

Sol: We have A = 2, B = 1, C = π
2
and D = 0.

Therefore, amplitude = |A| = |2| = 2, phase shift = −C
B
= −

π
2

1
= −π

2
, period = 2π

B
= 2π

1
= 2π

and the vertical shift is 0. Since the phase shift is −π
2
, we shift the graph of 2 sinx to the left

π
2
units.

−2

2

x

y

Example 9.3.2. Sketch the graph of f(x) = 2 + cos(x− π
2
) for +2π ≤ x ≤ 2π

Sol: We have A = −1, B = 1, C = −π
2
and D = 2.

Therefore, amplitude = |A| = |−1| = 1, phase shift = −C
B
= −−

π
2

1
= π

2
, period = 2π

B
= 2π

1
= 2π

and the vertical shift is 2.

1
x

y

Example 9.3.3. Sketch the graph of f(x) = tan(x− π
2
)

Sol: Exercise
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Double Angle Formulae

The following is a summary of the double angle formulae:

• sin 2x = 2 sin x cosx cos 2x = 2 cos2 x− 1

• sin 4x = 2 sin 2x cos 2x cos 4x = 2 cos2 2x− 1

• sin 6x = 2 sin 3x cos 3x cos 6x = 2 cos2 3x− 1

• sin 8x = 2 sin 4x cos 4x cos 8x = 2 cos2 4x− 1

• sinx = 2 sin 1
2
x cos 1

2
x cosx = 2 cos2 1

2
x− 1

• sin2 x = 1−cos 2x
2

cos2 x = 1+cos 2x
2

• sin 2x = 2 tanx
1+tan2 x

cos 2x = 1−tan2 x
1+tan2 x

• tan 2x = 2 tanx
1−tan2 x tanx =

2 tan(x
2
)

1−tan2(x
2
)

Exercise 9

1. Express each of the following in radians:

i) 60◦ ii) −420◦ iii) 135◦ iv) −45◦ v) 570◦ vi) −60◦ vii) −780◦

2. Express each of the following in degrees:

i) 5π
6

ii) 17π
4

iii) −4π
3

iv) −37π
24

v) π
36

vi) −π
3

vii) 7π
5

viii) 11π
3

3. Find the quadrant containing the terminal side of θ if the given conditions hold.

i) sin θ < 0 and cos θ > 0 ii) tan θ < 0 and cos θ > 0 iii) csc θ < 0 and cot θ > 0

iv) sec θ < 0 and tan θ > 0 v) csc θ > 0 and cot θ < 0 vi) sec θ > 0 and cot θ > 0

4. If the terminal side of θ is in the given quadrant, �nd all the trigonometric functional
values:

i) 1st quadrant and sin θ = 4
5

ii) 2nd quadrant and cos θ = − 5
13

iii) csc θ = −5
4

and sec θ < 0

iv) 4th quadrant and cot θ = − 5
12

v) csc θ > 0 and tan θ = −3
4

vi) θ is obtuse and
cot θ = −4

3

5. Find the exact values of the following, leaving your answer in surd form where necessary:

i) sin 225◦ ii) cos 150◦ iii) tan 330◦ iv) csc(−240)◦ v) sec 420◦ vi) cot 135◦

vii) sin 2π
3

ii) cos(−5π
3
) iii) tan 4π

3
iv) sec(−7π

6
) v) csc 9π

4
vi) cot(−π

3
)

6. Given that θ = π
3
, �nd the following

i) sin 2θ ii) 2 sin θ iii) sec 1
2
θ iv) cos(−3θ) v) tan2θ vi) cot θ
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7. Prove the following identities:

a) secx− cosx = sinx tanx b) sinx+ sinxtan2x = tanx secx c) tan2x+ 1 = sec2x

d) 1+secx
sinx+tanx

= cscx e) (sinx−cosx)2 = 1−2 sinx cosx f) 1
1−sinx−

1
1+sinx

= 2 tan x secx

g) (tanx)(1+cot2x)
1+tanx2

= cotx h) cotx sin 2x = 1 + cos 2x i) 1−tan2 x
1+tan2 x

= cos 2x

8. Simplify the following to a single trigonometric function or a constant:

a) sec θ− sin θ tan θ b) (cos2x−1)(tan2x+1) c) cosx+tanx sinx d) tan θ sin θ
sec2θ−1

e) secx−cosx
tanx

9. Solve each of the following equations for θ where 0◦ ≤ θ ≤ 360◦:

i) 2 sin θ +
√
2 = 0 ii) sin2θ − 1 = 0 iii) 2 cos2 θ = cos θ (iv) 2 tan θ = 1 v)

2 cos3 θ = cos θ

vi) 2 sin2 θ−cos θ−1 = 0 vii) 2 sin θ = tan θ vii) tan θ = cot θ viii) 4 cos2 θ =
3 iv) tan2 θ = 1

10. Solve each of the following equations for x where 0 ≤ x ≤ 2π:

a) tanx+1 = secx b) sinx = 1−cosx c) 2 tanx secx− tanx d) sinx = cscx

e)sec2 x−secx = 2 f)2 cos2 x+3 cosx+1 = 0 g)3 tan2 x−1 = 0 h)cosx sinx+
sinx− cosx = 1

11. Find the period, amplitude and phase shift of the given functions and sketch their graphs
for −2π ≤ x ≤ 2π:

a) f(x) = 2 sin(x− π
2
) b) f(x) = 4 cos 2(x+ π

2
) c) f(x) = 1

2
cos(2x+ π

2
)

12. Sketch the graphs of the following functions on the stated domains:

i) f(x) = −2 sin(x+ π
2
) , −π

2
≤ x ≤ 3π

2
ii) f(x) = 3+cos(2x−π) , π

2
≤ x ≤ 5π

2

i) f(x) = 2− sinx , −π ≤ x ≤ 2π (ii) f(x) = −2 + cos(x− π
2
) , π

2
≤ x ≤ 5π

2

13. Sketch the graphs of the following functions:

a) y = 3 cot(x− π
4
) (b) y = tan(x+ π

4
) (c) y = − csc(x+ π

4
) (c) y = 2 sec(x− π

2
)

14. Verify each of the following identities:

a) cos(α + 90◦) = − sinα (b) sin(α + 90◦) = cosα (c) sin(α + π) = − sinα (d)
cos(α− π) = − cosα

f) tan(α + π
4
) = 1+tanα

1−tanα (g) tan(α − π
4
) = tanα−1

tanα+1
(h) sin 2θ sin θ

2 cos θ
+ cos2 θ = 1 (i) sec 2θ =

sec2 θ
2−sec2 θ

15. Express: (a) sin 3θ in terms of sin θ (b) cos 3θ in terms of cos θ (c) cos 4θ in terms
of cos θ

16. solve each of the following for θ, where 0 ≤ θ ≤ 2θ.

(a)cos θ = sin 2θ (b)2 − sin2 θ = 2 cos2 θ
2

(c)sin θ
2
+ cos θ = 1 (d)cos 2θ − 3 sin θ = 2

(e)tan 2θ + sec 2θ = 1

17. Express f(x) =
√
3 cosx− sinx in the form f(x) = r cos(x+α). Hence, sketch its graph.

18. Find the general solution of: (a) cos θ −
√
3 sin θ = 1 (b) cosx+ sinx =

√
2.
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10

Logarithmic and Exponential Functions

10.1. Introduction to exponentials

An exponential function is a function of the form f(x) = bx. Here, the real number b is called
the base and the power x is called the exponent. A function of the form f(x) = bx+c is also
considered to be an exponential function, which can be written in the form f(x) = abx where
a = bc. The base is often taken to be e ≈ 2.718, where e is Euler's number, a number such
that the function f(x) = ex is its own derivative. The exponential function is used to model a
relationship in which a constant change in the independent variable gives the same proportional
change in the dependent variable.

Basic Rules of Indices

The following are the basic laws of the indices.

• Multiplication: If the base is the same, then add the powers xm × xn = xm+n

• Division: If the base is the same, then subtract the powers xm ÷ xn = xm−n

• Power: If an exponential is raised to another power, multiply the powers (xm)n = xmn

Example 10.1.1. Evaluate i) 100
3
2 ii) 32−

2
5 iii)

(
− 8

27

)− 1
3 iv) (−3)0

Sol: We apply the basic rules of indices

i) 100
3
2 =

(
100

1
2

)3
=
(√

100
)3

= 103 = 1000

ii) 32−
2
5 = 1

32
2
5
= 1

( 5√32)
2 = 1

(2)2
= 1

4

iii)
(
− 8

27

)− 1
3 =

(
−27

8

) 1
3 = (−1) 1

3

(
27
8

) 1
3 = (−1)

3√27
3√8 = −3

2

iv) (−3)0 = 1

Example 10.1.2. Solve the equation 2x = 64

Sol: Note that 64 = 25. Hence we have 2x = 25 =⇒ x = 5
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Example 10.1.3. Solve the equation 22x+1 − 15(2x) = 8

Sol: We rewrite 22x+1 − 15(2x) = 8 as 2 (2x)2 − 15(2x) = 8 and then let y = 2x. Hence,

22x+1 − 15(2x) =8

2 (2x)2 − 15(2x) =8

2y2 − 15y − 8 =0 letting 2x = y

(2y + 1)(y − 8) =0

We get x = −1
2
and x = 8. Hence, 2x = −1

2
and 2x = 8. From 2x = 8, we get x = 3. However,

2x = −1
2
is not valid, hence it is discarded.

Example 10.1.4. Solve the following simultaneous equations

3x × 9y = 1 (i)

22x × 4y =
1

8
(ii)

Sol: From equation (i), we have

3x × 9y =1

3x × 32y =30

Hence, x+ 2y =0 (iii)

Similarly, from (ii), we get

22x × 4y =
1

8
22x × 22y =2−3

22x+2y =2−3

Hence, 2x+ 2y =− 3 (iv)

Solving equations (iii) and (iv) simultaneously gives x = −3 and y = 3
2

10.1.1 Graphs of Exponential Functions

Let f(x) = bx be an exponential function with b ∈ (1,∞). Then the graph of y = f(x) looks
as shown below. Note that if there is no vertical shift, the graph of an exponential will pass
through the point (0, 1) and is asymptotic to the line y = 0. Below is a sketch of the graph
when b > 1
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1
x

y

When the value of the base b is a less than 1, the graph has the orientation shown below.

1
x

y

Example 10.1.5. Sketch the graphs of the function f(x) = 3x and g(x) = 1
3
x2 on the same

axis. State the domain and the range for each.

1
x

y

From the graph, we see that Df = (−∞,∞) and Rf = (0,∞). The line y = 0 is an asymptote.

Example 10.1.6. Sketch the graph of the function f(x) = ex + 1. State the domain, range
and the equation of the asymptote.
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Sol: The graph of this function is obtained by shifting the graph of ex one unit upwards.

1

2

x

y

From the graph, we see that Df = (−∞,∞) and Rf = (1,∞). The line y = 1 is an asymptote.

Example 10.1.7. sketch the graph of the function f(x) = e−x + 3. State the domain, range
and the line of asymptote.

1

3

4

x

y

From the graph, we see that Df = (−∞,∞) and Rf = (3,∞). The line y = 3 is an asymptote.

Example 10.1.8. Sketch the graph of the function f(x) = 2 − ex. State the domain and the
range

1

2

x

y

From the graph, we see thatDf = (−∞,∞) and Rf = (−∞, 2). The line y = 2 is an asymptote.
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10.2. Introduction to Logarithms

The use of calculators has made the logarithmic tables to be rarely used for calculations.
However, the theory of logarithms is important, for there are several scienti�c laws that involve
the rules of logarithms.

De�nition 10.2.1. Let y ∈ R. Further, let b ∈ R+ − {1}. Then the number x is called the
logarithm of y to the base b if

y = bx

We can make a conversion from the exponential form to the logarithmic form using the following
relationship

If y = bx then x = logb y

Example 10.2.1. Convert the following exponentials to logarithmic form.

i) 105 = 100000 ii) 2−2 =
1

4
iii)

(
1

2

)3

=
1

8

Sol:

i) If 105 = 100000, then log10 100000 = 5

ii) If 2−2 = 1
4
, then log2

1
4
= −2

iii) If
(
1
2

)3
= 1

8
, then log 1

2

1
8
= 3

Example 10.2.2. Convert the following logarithms to exponential form.

i) 4 = log3 x ii) x = log7 5 iii) 2 = logx 10

Sol:

i) If 4 = log3 x, then 34 = x

ii) If x = log7 5, then 7x = 5

iii) If 2 = logx 10, then x2 = 10

Example 10.2.3. Solve for x in the following expressions

i) x = log2 64 ii) logx 25 = 2 iii) log3 x = 4 iv) x = log3
1

3

Sol: To solve logarithmic equations, we need to convert to exponential form.

i) If x = log2 64, then 2x = 64. Writing in the same base, we have 2x = 26 so that x = 6

ii) If logx 25 = 2, then x2 = 25 so that x = 5

iii) If log3 x = 4, then x = 34 = 81. Hence, x = 81

iv) If x = log3
1
3
, then 3x = 1

3
= 3−1. Thus, 3x = 3−1 so that x = −1
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10.2.1 Laws of Logarithms

Let b ∈ R+ − {1}. Further, let x and y be real numbers. Then the following hold

1. Raising a number to a given power: logb x
n = n logb x

2. Changing from base N to base b: logN x = logb x
logbN

3. Multiplying two numbers: logb(xy) = logb x+ logb y

4. Dividing two numbers: logb(
x
y
) = logb x− logb y

5. Log of 1 to any base: logb 1 = 0

6. log of the base: logb b = 1

Example 10.2.4. Simplify the following expressions

i) log9 81 ii) log5

(
1

25

)
iii) log2 9 + log2 21− log2 7

Sol:

i) log9 81 = log9 9
2 = 2 log9 9 = (2)(1) = 2

ii) log5
(

1
25

)
= log5 5

−2 = −2 log5 5 = (−2)(1) = −2

iii) log2 9 + log2 21− log2 7 = log2(9× 21÷ 7) = log2 27 = log2 3
3 = 3 log2 3

Note 10.2.1. Two special logarithms are worth noting:

• Common Logarithms: These are logarithms whose base is 10. We denote the common
logarithms by lg. For example, log10 x = lg x. Similarly, log10 7 = lg 7, log10

1
2
= lg 1

2

• Natural Logarithms: These are logarithms whose base is e. We denote the common
logarithms by ln. For example, loge x = lnx. Similarly, loge 7 = ln 7, loge

1
2
= ln 1

2

Example 10.2.5. Write the expression ln
(

8× 4√5
81

)
in terms of ln 2, ln 3 and ln 5

Sol: We apply the laws of logarithms.

ln

(
8× 4
√
5

81

)
= ln 8 + ln

4
√
5− ln 81

= ln 23 + ln 5
1
4 − ln 34

=3 ln 2 +
1

4
ln 5− 4 ln 3
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10.2.2 Logarithmic Equations

Example 10.2.6. Find the possible values of x for which log 5 + log x = 1

Sol: Use the rules of logarithms and convert to exponential form.

log2 5 + log2 x =1

log2 5x =1

5x2

x =
2

5

Example 10.2.7. Solve the equation ln(x− 1) + ln(x+ 1) = 2 ln(x+ 2)

Sol: We use the rules of logarithms

ln(x− 1) + ln(x+ 1) =2 ln(x+ 2)

ln(x− 1)(x+ 1) = ln(x+ 2)2

(x− 1)(x+ 1) =(x+ 2)2

x2 − 1 =x2 + 4x+ 4

4x =− 5

x =− 5

4

Example 10.2.8. Solve the following equation 9 logx 5 = log5 x

Sol: Make sure the base is the same through out. Hence, note that 9 logx 5 = 9 log5 5
log5 x

= 9
log5 x

.
Therefore,

9 logx 5 = log5 x

9

log5 x
= log5 x

Let log5 x = y. Then substituting this above gives

9

y
=y

9 =y2

y2 − 9 =0

(y − 3)(y + 3) =0

Hence, x = 3 and x = −3

Since we can not have a negative base, discard x = −3 and we say x = 3
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10.2.3 Graphs of Logarithmic Functions

Since the logarithmic function is the inverse of the exponential function, we can obtain the
graph of y = logb x by re�ecting the graph of y = bx in the line y = x. Below is the sketch of
the graph of y = logb x when b > 1.

1

x

y

Example 10.2.9. Sketch the graphs of the following functions clearly indicating the intercepts
and asymptotes. Hence, state the domain and the range.

i) f(x) = 2− lnx ii) gx = 1 + log 1
2
x iii) h(x) = 3 + lnx iv) 2− log5 x

Sol: Exercise

10.3. Applications of Exponential and Logarithmic Functions

The exponential function is widely used in physics, chemistry, engineering, mathematical bi-
ology, economics and mathematics. The exponential function is used to model a number of
random and natural phenomenon.

Example 10.3.1. A highly infectious disease is introduced into a small isolated village of
population 200. The number of individuals y who have contracted the disease t days after the
outbreak begins is modelled by the equation

y =
200

1 + 199e−0.2t

Determine:

i) the number of individuals infected initially

ii) the number of individuals infected after 10 days

iii) determine the time when half the population will be infected.
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Sol:

i) Initially implies that t = 0. Therefore,

y =
200

1 + 199e−0.2t

=
200

1 + 199e−0.2(0)

=
200

1 + 199e0

=
200

1 + 199(1)
since e0 = 1

=
200

200
=1 Hence, one individual was infected initially

ii) Taking t = 10, we have,

y =
200

1 + 199e−0.2t

=
200

1 + 199e−0.2(10)

=
200

1 + 199e−2

=
200

1 + 199(0.135)
since e−2 ≈ 0.1353353

=
200

27.932
=7.160 Hence, 7 individuals will be infected after 10 days

iii) Taking y = 1
2
(200) = 100 and solving for t, we have,

100 =
200

1 + 199e−0.2t

100
(
1 + 199e−0.2t

)
=200

1 + 199e−0.2t =2

e−0.2t =
1

199

ln e−0.2t = ln(
1

199
) after taking logs on both sides

−0.2t =− ln 199

t =
ln 199

0.2
t =26.5 days

The above example shows the basic use of the exponential function. For more on the application
of the exponential and logarithmic functions, see the exercise below.
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Exercise 10

1. Solve the following equations:

a)2x = 32 b)(1
2
)x = 1

16
c)274x = 9x+1 d)(1

8
)−2y = 2y+3 e)22x+1 = 3(2x)− 1

2. Sketch the graphs of the following functions:

a) y = −4x+2 b) y = 3−x− 1 c) y = (1
4
)x d) y = −2+ e−x e) y = 1− ex

3. Write each of the following in logarithmic form:

(a) 23 = 8 b) (2
3
)−3 = 27

8
c) 4−2 = 1

16
d) (0.4)3 = 0.064 e) 51 = 5

4. Write each of the following in exponential form:

(a)log2 64 = 6 b) log2 (
1
16
) = −4 c)log10 0.00001 = −5 d) log5 0.5 = −1

5. Solve each of the following:

a)log3 81 = x b) logx 81 = 2 c)log8
x
2
= log8 x

log8 2
d) log4 y = 3

2
e) logx 3 = 1

2

g)3x = 5 h) 2x = 9 i)52x+1 = 32−x j) 22x−1 = 32−x k) 6x+1 = 8

6. Simplify the following logarithms or write as a single quantity.

(a)2 logb x+4 logb y−3 logb z (b) 2 logb x+
1
2
logb(x−1)−4 logb(2x+5) (c)− lnx−3 ln 2

(d)2 ln 8 + 5 ln 2 (e) 1
2
lnx− 5 lnx+ 4 ln y (f)ln 64− ln 128 + ln 32

7. Find the possible values of x for which:

a) log 5 + log x = 0 b) log3 x− 2 logx 3 = 1 c) ln(x− 4) + ln(x− 1) = 1

d) log(x− 1) + log(x+ 1) = 2 log(x+ 2) e) log3(2− 3x) = log9(6x
2 − 19x+ 2)

8. Write ln
(

125× 4√16
4√
813

)
in terms of ln 2, ln 3 and ln 5

9. Show that log4 3 = log2
√
3. Hence solve the following simultaneous equations

3y = 9x , 2 log2 y = log4 3 + log2 x

10. Express log9 xy in terms of log3 x and log3 y. Hence solve for x and y in the simultaneous
equations

log9 xy = 5
2
, log3 x log3 y = −6

11. In a certain bacterial culture, the equation p(t) = 1000e0.4t expresses the number of
bacteria present as a function of time t, where t is expressed in hours.

(a) How many bacteria are present initially?

(b) How many bacteria are present after 2 hours?

(c) After how many hours will the number of bacteria be double the initial number?

12. The rate at which a body cools is given by θ = 250e−0.05t where the excess of the tem-
perature of a body above its surrounding at time t minutes is θ◦C:

(a) Sketch the graph showing the natural decay curve for the �rst hour of cooling

(b) Determine temperature after 25 minutes and the time when temperature is 195◦C.
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13. Suppose that a certain substance has a half life of 20 years. If there are presently 2500
milligrams of the substance, then the equation Q(t) = 2500(2)−

t
20 yields the amount

remaining after t years

(a) How much remains after 40 years?

(b) How many years will it take for only half the initial amount to remain?
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11

Binomial Expansions

11.1. Introduction

A binomial expression is one which contains two terms connected by a plus or minus sign, such
as (a+ b), (x− y), (2x+ y)2, etc. If the binomial (x+ y) is squared, the result is the expansion
of (x+ y)2. Similarly, if its cubed, the result is the expansion of (x+ y)3 and so on.

We will be interested in the binomial expansions of the form (a+x)n, where n ∈ R, and usually
rational. We start with the case where n is a positive integer. Consider the expansion of (a+x)n

for integer values of n from 0 to 6:

(a+ x)0 = 1

(a+ x)1 = a+ x

(a+ x)2 = a2 + 2ax+ x2

(a+ x)3 = a3 + 3a2x+ 3ax2 + x3

(a+ x)4 = a4 + 4a3x+ 6a2x2 + 4ax3 + x4

(a+ x)5 = a5 + 5a4x+ 10a3x2 + 10a2x3 + 5ax4 + x5

(a+ x)6 = a6 + 6a5x+ 15a4x2 + 20a3x3 + 15a2x4 + 6ax5 + x6

Note 11.1.1. From this expansion, we are able to notice the following:

• The powers of a decrease from n to 0 moving from left to right

• The powers of x are increasing from 0 to n moving from left to right

• The coe�cients of each term of the expansions are symmetrical about the middle co-
e�cient when n is even and symmetrical about the two middle coe�cients when n is
odd.

• For each term of the expansion, the powers of a and x add up to n

• The expansion of (a+ x)n has n+ 1 terms

Isolating the coe�cients of the above expansion gives the pattern below called the Pascal's
Triangle, named after the French Mathematician Pascal (1623-1662). Working through the
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pattern in the triangle can give us the coe�cients of the expansion (a + x)n, and hence, the
expansion can be determined. The �gure below shows part of the Pascal's Triangle. Each
number in the triangle is obtained by adding together the two numbers directly above.

1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

The second row is 1 2 1. This represents the coe�cients of (a+ x)2 = a2 + 2ax+ x2.

Similarly, the third row is 1 3 3 1 which has coe�cients of (a+x)3 = a3+3a2x+3ax2+x3

The last row, 1 6 15 20 15 6 1 has coe�cients of (a+ x)6

Studying the pattern of the Pascal's Triangle, enables us to obtain coe�cients of (a + x)n for
n ∈ N. For example, we can see that the coe�cients of (a+ x)7 will make the next row in our
diagram above. Verify that this is given by

1 7 21 35 35 21 7 1

Hence, the expansion of (a+ x)7 is given by

(a+ x)7 =1a7 + 7a6x+ 21a5x2 + 35a4x3 + 35a3x4 + 21a2x5 + 7ax6 + 1x7

=a7 + 7a6x+ 21a5x2 + 35a4x3 + 35a3x4 + 21a2x5 + 7ax6 + 1x7

Note that the coe�cients of a decreases from 7 to 0, while the coe�cients of x increases from
0 to 7. Also, the sum of the powers is always equal to 7.

Example 11.1.1. Expand (a+ x)8

Sol: Exercise

Example 11.1.2. Expand the binomial (3x− 1)4

Sol: Using the Pascal's Triangle for n = 4, the coe�cients are: 1 4 6 4 1. Hence

(3x− 1)4 =1(3x)4(−1)0 + 4(3x)3(−1) + 6(3x)2(−1)2 + 4(3x)(−1)3 + 1(3x)0(−1)4

=81x4 − 108x3 + 54x2 − 12x+ 1

Example 11.1.3. Find in ascending powers of x the expansion of (2− x
2
)6
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Sol: For n = 6, the coe�cients are: 1 6 15 20 15 6 1. Therefore,

(2− x

2
)6 =1(2)6 + 6(2)5(−x

2
) + 15(2)4(−x

2
)2 + 20(2)3(−x

2
)3 + 15(2)2(−x

2
)4 + 6(2)(−x

2
)5 + 1(−x

2
)6

=64− 6(24)x+ 15(22)x2 − 20x3 + 15(
1

22
)x4 − 6(

1

24
)x5 +

1

26
x6

=64− 96x+ 60x2 − 20x3 +
15

4
x4 − 3

8
x5 +

1

64
x6

=64− 96x+ 60x2 − 20x3 +
15x4

4
− 3x5

8
+
x6

64

Example 11.1.4. Find, in ascending powers of x, the �rst three terms in the expansion of the
binomial (1− 3x

2
)5

Sol: For n = 5, the Coe�cients from Pascal's Triangle are: 1 5 10 10 5 1 Hence,the
�rst three terms end up to the coe�cient of 10

(1− 3x
2
)5 = 1(1)5 + 5(1)4(−3x

2
) + 10(1)3(−3x

2
)2 + · · · = 1− 15x

2
+ 45x2

2
+ · · ·

Hence, the �rst three terms are 1− 15x
2

+ 45x2

2

Example 11.1.5. Use the binomial expansion of (1− x
2
)4 to �nd the exact value of (0.995)4

Sol: n = 4. From Pascal's Triangle, the required coe�cients are: 1 4 6 4 1. Hence,

(1− x

2
)4 =1(1)4(−x

2
) + 4(1)3(−x

2
) + 6(1)2(−x

2
)2 + 4(1)(−x

2
)3 + 1(−x

2
)4

=1 + 4(−x
2
) + 6(−x

2
)2 + 4(−x

2
)3 + (−x

2
)4

=1− 2x+
3x2

2
− x3

2
+
x4

16

To �nd the exact value of (0.995)4, equate it to (1− x
2
)4 and determine the required value of x

Thus, 0.995 = 1 − x
2
=⇒ x = 0.01. Using this value of x in the expansion gives the results.

Hence,

(0.995)4 =

(
1− 0.01

2

)4

=1− 2(0.01) +
3(0.01)2

2
− (0.01)3

2
+

(0.01)4

16

=1 +
3(0.01)2

2
+

(0.01)4

16
− 2(0.01)− (0.01)3

2
=1 + 0.00015 + 0.000000000625− 0.02− 0.0000005

=1.000150000625− 0.0200005

=0.980149500625

Hence, (0.995)4 = 0.980149500625
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11.2. The Binomial Theorem

The use of Pascal's Triangle in determining the coe�cients of the Binomial expansion can be
very tedious if the value of n is large. The approach works well for n values from 0 up to
8. For larger values, it does not work quite well as the computation becomes burdensome.
Hence, a more general, yet non-burdensome method is needed. The binomial series or binomial
theorem is a more general formula for raising a binomial expression to any power without
lengthy multiplication. Below is the formula for the Binomial series expansion of (a+ bx)n.

(a+ bx)n =
n∑
r=0

(
n

r

)
an−r(bx)r

OR

(a+ bx)n = an +

(
n

1

)
an−1(bx) +

(
n

2

)
an−2(bx)2 + · · ·+

(
n

r

)
an−r(bx)r + · · ·+ (bx)n

where the expression
(
n
r

)
= n!

(n−r)!r! , denotes the Binomial coe�cients.

When a = 1 in the binomial (a+ bx)n, the the formula for expansion simpli�es to

(1 + bx)n =
n∑
r=0

(
n

r

)
(bx)r

OR

(1 + bx)n = 1 +

(
n

1

)
bx+

(
n

2

)
(bx)2 + · · ·+

(
n

r

)
(bx)r + · · ·+ (bx)n

Binomial Coe�cients

Before we apply the Binomial Theorem to the Binomial Expansions, let us study the coe�cients
of the Binomial Series,

(
n
r

)
.

De�nition 11.2.1. The factorial of a positive integer, n, denoted n! is de�ned by,

n! = n(n− 1)(n− 2)(n− 3) · · · 2.1

Example 11.2.1. i) 5! = 5(4)(3)(2)(1) = 120 ii) 2! = 2(1) = 2 iii) 1! = 1 iv) 0! = 1

The factorial of a positive integer n is just the product of all integers from n down to 1

Therefore, the Binomial coe�cient is now de�ned as(
n

r

)
=

n!

(n− r)!r!
Alternatively, (

n

r

)
=
n(n− 1)(n− 2) · · · (n− r + 1)

r!
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Example 11.2.2. Evaluate the following

i)
(
8
3

)
ii)
(
8
5

)
iii)
(
8
0

)
iv)
(
8
8

)
v)
(
8
1

)
Sol: Using

(
n
r

)
= n!

(n−r)!r! , we get

i)
(
8
3

)
= 8!

(8−3)!3! =
8!
5!3!

= 8×7×6×5×4×3×2×1
(5×4×3×2×1)(3×2×1) =

8×7×6
3×2×1 = 8×7

1
= 56

ii)
(
8
5

)
= 8!

(8−5)!5! =
8!
3!5!

= 8×7×6
3!

= 8× 7 = 56

iii)
(
8
0

)
= 8!

(8!)!0!
= 8!

8!×0! =
8!

8!×1 = 1

iv)
(
8
8

)
= 8!

(8−8)!8! =
8!
0!8!

= 8!
8!
= 1

v)
(
8
1

)
= 8!

(8−1)!1! =
8!
7!1!

= 8×7×6×5×4×3×2×1
7×6×5×4×3×2×1 = 8

Using the Binomial Theorem

By de�nition, we have

(a+ bx)n = an +

(
n

1

)
an−1(bx) +

(
n

2

)
an−2(bx)2 + · · ·+

(
n

r

)
an−r(bx)r + · · ·+ (bx)n

Alternatively, this can be written as

(a+bx)n = an+nan−1(bx)+
n(n− 1)

2!
an−2(bx)2+· · ·+n(n− 1) · · · (n− r + 1)

r!
an−r(bx)r+· · ·+(bx)n

Note that the �rst four terms of the expansion of (a+ bx)n are noticed as

(a+ bx)n = an + nan−1(bx) +
n(n− 1)

2!
an−2(bx)2 +

n(n− 1)(n− 2)

3!
an−3(bx)3 + · · ·

The coe�cient of the rth term in the expansion is given by
(
n
r−1

)
OR in other words,

The coe�cient of the (r + 1)th term in the expansion is given by
(
n
r

)
Hence,

the (r+ 1)th term of the expansion (a+ bx)n is

(
n

r

)
(a)n−r(bx)r

Example 11.2.3. Expand (2 + x)6

Sol: We can either use Pascal's Triangle or The Binomial Theorem. We use the later.

(2 + x)6 = 26 + 6(2)5x+ 6(5)
2!

24x2 + 6(5)(4)
3!

23x3 + 6(5)(4)(3)
4!

22x4 + 6(5)(4)(3)(2)
5!

2x5 + 6(5)(4)(3)(2)(1)
6!

x6

= 64 + 192x+ 240x2 + 160x3 + 60x4 + 12x5 + x6

Example 11.2.4. Use the Binomial Theorem to expand (1− 2x)5

137



Sol: using (a+ bx)n =
∑n

r=0

(
n
r

)
an−r(bx)r, we have

(1− 2x)5 =
n∑
r=0

(
5

r

)
(1)n−r(−2x)r

=
n∑
r=0

(
5

r

)
(−2x)r

=

(
5

0

)
(−2x)0 +

(
5

1

)
(−2x)1 +

(
5

2

)
(−2x)2 +

(
5

3

)
(−2x)3 +

(
5

4

)
1(−2x)4 +

(
5

5

)
(−2x)5

=1− 2x+ 40x2 − 80x3 + 80x4 − 32x5

Example 11.2.5. Find the �rst four terms in the expansion of (x− 2)12

Sol: Using the Binomial Theorem,

(x− 2)12 =
n∑
r=0

(
12

r

)
(x)n−r(−2)r

=x12 + 12x11(−2) + 12× 11

2!
x10(−2)2 + 12× 11× 10

3!
x9(−2)3 + · · ·

=x12 − 24x11 + 264x10 − 1760x9 + · · ·

Example 11.2.6. Find the 5th term in the expansion of
(
2x− 1

2

)12
Sol: Since we need the 5th term, we take r = 5− 1 = 4

The 5th term =
(
12
4

)
(2x)12−4(−1

2
)4 = 10×9×8×7

4!
(2x)6(1

2
)4 = 840x6

Example 11.2.7. Find the term that is independent of x in the expansion of (2x− 1
x
)10

Sol: The (r + 1)th term =
(
10
r

)
(2x)10−r(− 1

x
)r. Hence

(r + 1)th term =

(
10

r

)
(2x)10−r(−1

x
)r

=

(
10

r

)
(2)10−rx10−r(−1)r( 1

x
)r

=

(
10

r

)
(−1)r(2)10−rx10−rx−r

=

(
10

r

)
(−1)r(2)10−rx10−2r

If any term is to be independent of x, then x10−2r = 1 =⇒ 10− 2x = 0 =⇒ x = 5

Hence, the 6th term is independent of x

So far, our discussion of the Binomial Theorem has made use of only positive integer values of
n. What if n is not a positive integer? The next subsection discusses the general application
of the Binomial Theorem, provided n is rational.
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Binomial Theorem for Any Rational Power

The Binomial Expansion formula,

(a+ bx)n = an +

(
n

1

)
an−1(bx) +

(
n

2

)
an−2(bx)2 + · · ·+

(
n

r

)
an−r(bx)r + · · ·+ (bx)n

applies to all rational powers provided that |x| < a
b
or − a

b
< x < a

b
. Further, for the series to

converge, an additional point is needed that |x| < a.

Example 11.2.8. Use the Binomial expansion to �nd the �rst four terms in the polynomial
approximation for 1

(2−3x)2

Sol: We rewrite 1
(2−3x)2 as (2− 3x)−2. Hence, using the Binomial Theorem, we have

1

(2− 3x)2
=(2− 3x)−2

=(2)−2 + (−2)(2)−2−1(−3x) + (−2)(−3)
2!

(2)−2−2(−3x)2 + (−2)(−3)(−4)
3!

(2)−5(−3x)3 + · · ·

=
1

4
+

6

8
x+

27

16
x2 +

(−2)(−3)(−4)
3!

(2)−5(−3x)3 + · · ·

=
1

4
+

3

4
x+

27

16
x2 +

27

8
x3 + · · ·

This is valid for |3x| < 2 =⇒ |x| < 2
3

Example 11.2.9. Expand 1
(1+2x)3

in ascending powers of x as far as the term in x3, using the
binomial series. State the limits of x for which the expansion is valid.

Sol: Rewrite 1
(1+2x)3

as (1 + 2x)−3 and then use the Binomial Theorem.

1

(1 + 2x)3
=(1 + 2x)−3

=1 + (−3)(2x) + (−3)(−3− 1)

2!
(2x)2 +

(−3)(−3− 1)(−3− 2)

3!
(2x)3 + · · ·

=1− 6x+ 24x2 − 80x3 + · · ·

This expansion is valid for |x| < 1
2
, ie, it is valid provided −1

2
< x < 1

2

Example 11.2.10. Expand
√
1− x in ascending powers of x as far as the term in x3, using

the binomial series. State the limits of x for which the expansion is valid.

Sol: Rewrite
√
1− x as (1− x) 1

2 and then use the Binomial Theorem with n = 1
2
.

√
1− x =(1− x)

1
2

=1 + (
1

2
)(−x) +

(1
2
)(1

2
− 1)

2!
(−x)2 +

(1
2
)(1

2
− 1)(1

2
− 2)

3!
(−x)3 + · · ·

=1− x

2
− x2

8
− x3

16
− · · ·

This expansion is valid for |x| < 1, ie, it is valid provided −1 < x < 1
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Example 11.2.11. Use the Binomial expansion to �nd a series expansion for the rational
expression 3x+5

x2+2x−3 up to the term in x3.

Sol: Using partial fraction decomposition, we can show that 3x+5
x2+2x−3 = 1

x+3
+ 2

x−1 .

To obtain the required series expansion, we obtain the expansion for 1
x+3

and the expansion for
2

x−1 . Then add the two expansions.

1

x+ 3
=(3 + x)−1

=(3)−1(1 +
x

3
)−1

=
1

3
[1 + (−1)(x

3
) +

(−1)(−2)
2!

(
x

3
)2 +

(−1)(−2)(−3)
3!

(
x

3
)3 + · · · ]

=
1

3
[1− x

3
+
x2

9
− x3

27
+ · · · ]

=
1

3
− x

9
+
x2

27
− x3

81
+ · · ·

This expansion is valid for |x| < 3.

2

x− 1
=2(x− 1)−1

=− 2(1− x)−1

=− 2[1 + (−1)(−x) + (−1)(−2)
2!

(−x)2 + (−1)(−2)(−3)
3!

(−x)3 + · · · ]

=− 2[1 + x+ x2 + x3 + · · · ]
=− 2− 2x− 2x2 − 2x3 − · · ·

This expansion is valid for |x| < 1.

Hence, the expansion is:

3x+ 5

x2 + 2x− 3
=(

1

3
− x

9
+
x2

27
− x3

81
+ · · · ) + (−2− 2x− 2x2 − 2x3 − · · · )

=
1

3
− 2− x

9
− 2x+

x2

27
− 2x2 − x3

81
− 2x3 + · · ·

=− 5

3
− 19x

9
− 53x2

27
− 163x3

81
− · · ·

This expansion is valid for |x| < 1

Example 11.2.12. Use the Binomial expansion to �nd a series expansion for the rational
expression 1−x−x2

(1−2x)(1−x)2 up to the term in x3.

Sol: Exercise
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12

Introduction to Calculus

12.1. Introduction

One of the most fundamental topics studied in mathematics is Calculus. Calculus is simply a
branch of mathematics that studies changing quantities, such as velocity, acceleration, rate of
in�ation, rate of spread of disease, etc. Calculus is widely used by many di�erent professionals
to model real life phenomenon. Economists, Engineers and scientists in general apply calculus
to solve the real word problems. Since calculus is the science of change, the rate at which a
chemical reaction is taking place and the mode of that reaction can be determined using the
concepts of calculus. Take the rate at which the population of a particular bacteria in a given
culture is growing. All these and many other problems are simpli�ed through the use of calculus
to solve them.

12.2. Limits of Functions

The notion of a limit is fundamental to the study of calculus. Thus, it is important to acquire a
good working knowledge of limits before proceeding to the other topics in calculus. Suppose that
a function f(x), is de�ned for all points in the domain of f(x), except possibly at a particular
point say c. We are interested in knowing the behaviour of this function as the domain values
get closer and closer to this point c. If as the domain values approach c, the function f(x)
approaches a real number say L, then we say that the limit of f(x) as x approaches c is L. We
write this limit as

lim
x→c

f(x) = L

We can determine the limit of a function using three basic methods;

1. Numerical Approach: This involves constructing a table of values of x getting closer
and closer to c, with the corresponding y = f(x) values.

2. Graphical Approach: Draw the graph of the function, then observe the limit of the y
values as x values approach c.

3. Analytic Approach: Here, we use the concepts of algebra and calculus to determine
the limits

We will focus on the use of graphical method and analytical approach as the methods of
determining the limits. Let us now give a formal de�nition of a limit.
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De�nition 12.2.1. Let f(x) be a function de�ned on an open interval containing a point c,
but not necessarily at c. If L is a real number such that as the x values approach c from either
the left hand side or right hand side of c, f(x) gets arbitrarily close to L, then L is called the
limit of f(x) as x approaches c. This is written as

lim
x→c

f(x) = L

Note that x can actually approach c for two directions, the L.H.S and the R.H.S. Hence we can
talk of two kinds of limits:

• If as x approaches c from the L.H.S, f(x) is approaching L1, we write

lim
x→c−

f(x) = L1

to denote the left limit of f(x) as x approaches c. The minus sign on c− indicates that
the x values are being taken from the negative side of c, but are not necessarily negative.

• If as x approaches c from the R.H.S, f(x) is approaching L2, we write

lim
x→c+

f(x) = L2

to denote the right limit of f(x) as x approaches c. The plus sign on c+ indicates that
the x values are being taken from the positive side of c, but are not necessarily positive.

Theorem 12.2.2. Let f(x) be a function de�ned on an open interval containing a point c, but
not necessarily at c. The limit of f(x) as x approaches c exists if and only if the left limit and
the right limit of f(x) at c exist and are equal. ie

lim
x→c

f(x) = L iff lim
x→c−

f(x) = L and lim
x→c+

f(x) = L

Example 12.2.1. Given the function f(x) = x+ 1,

i) sketch the graph y = x+ 1

ii) Hence, determine limx→0− f(x) and limx→0+ f(x)

iii) Does the limit exist?

Sol: i) The sketch of this function is a straight line y = x+ 1, shown below.

−1

1
x

y
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ii) From the graph, we can see that

lim
x→0−

f(x) = 1 and lim
x→0+

f(x) = 1

iii) Using the concept from the theorem above, since

lim
x→0−

f(x) = lim
x→0+

f(x) = 1

Therefore, we conclude that the limit exist and that, lim
x→0

f(x) = 1

Example 12.2.2. Sketch the graph of the function f(x) = x3−4x2−x+4. Hence, determine;

i) lim
x→− 1

2

f(x) ii) lim
x→0

f(x) iii) lim
x→1

f(x) iv) lim
x→2

f(x)

Sol: This is a polynomial of degree 3. The sketch is shown below.

−4 1

4

x

y

i) From the graph,

lim
x→− 1

2

−
f(x) = lim

x→− 1
2

−
x3−4x2−x+4 =

27

8
and lim

x→− 1
2

+
f(x = lim

x→− 1
2

+
x3−4x2−x+4) =

27

8

Hence, the limit exists at c = −1
2
and we say lim

x→− 1
2

f(x) =
27

8

ii) similarly, from the graph,

lim
x→o−

f(x) = 4 and lim
x→0+

f(x) = 4

Hence, the limit exists at c = 0 and we write lim
x→0

f(x) = 4

iii) From the graph,
lim
x→1−

f(x) = 0 and lim
x→1+

f(x) = 0

Hence, the limit exists at c = 1 and we write lim
x→1

f(x) = 0
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iv) From the graph,
lim
x→2−

f(x) = −6 and lim
x→2+

f(x) = −6

Hence, the limit exists at c = 2 and we write lim
x→2

f(x) = −6

Example 12.2.3. Sketch the graph of the function f(x) where

f(x) =

{
x2 − 1 if x < 3;
x− 2 if x ≥ 3.

Hence, determine

i) lim
x→2

f(x) ii) lim
x→3

f(x) iii) lim
x→1

f(x) iv) lim
x→5

f(x)

Sol:

3

1

8

x

y

i) From the graph,
lim
x→2−

f(x) = 3 and lim
x→2+

f(x) = 3

Since the left limit equals the right limit, limit exists at x = 2. Therefore,

lim
x→2

f(x) = 3

ii) From the graph,
lim
x→3−

f(x) = 8 while lim
x→3+

f(x) = 1

Since the left limit is not equal to the right limit, limit does NOT exists at the point where
c = 3. In mathematical terms, since

lim
x→3−

f(x) 6= lim
x→3+

f(x)

the limit at c = 3 does not exists

iii) Exercise

iv) Exercise
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Example 12.2.4. Sketch the graph of the function f(x) =
√
x+ 1. Hence, determine

i) lim
x→3

f(x) ii) lim
x→− 1

4

f(x) iii) lim
x→−1

f(x) iv) lim
x→0

f(x)

Sol: This is a radical function whose domain is [−1,∞)

−1

1
x

y

i) From the graph,
lim
x→3−

f(x) = 2 and lim
x→3+

f(x) = 2

Hence, the limit exists at c = 3 and we say

lim
x→3

f(x) = 2

ii) From the graph,

lim
x→− 1

4

−
f(x) =

√
3

2
and lim

x→− 1
4

+
f(x) =

√
3

2

Hence, the limit exists at c = −1
4
and we say

lim
x→− 1

4

f(x) =

√
3

2

iii) From the graph,

lim
x→−1−

f(x) does not exists because f(x) =
√
x+ 1 is not de�ned on the L.H.S of −1

However, lim
x→−1+

f(x) = 0. Thus, the right limit exists, but the left limit does not exist.

Therefore, we conclude that lim
x→−1

f(x) does not exist for the function f(x) =
√
x+ 1

Example 12.2.5. Sketch the graph of f(x) = 1
x2
. Hence, determine the existence of the limit

lim
x→0

1

x2
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Sol: This is a rational function. Df = {x| x 6= 0, x ∈ R}

x

y

We can see that

lim
x→0−

f(x) = lim
x→0−

1

x2
=∞ and lim

x→0+
f(x) = lim

x→0+

1

x2
=∞

Because f(x) is not approaching a real number L as x approaches 0, we conclude that the limit
does not exists. ie

lim
x→0

1

x2
=∞ Hence, the limit does not exist.

12.2.1 Properties of Limits

So far, we have determined our limits through graph sketching. Recall that the limit of a
function f(x) as x approaches c does not depend on the value of f at x = c. It may happen,
however, that the limit is precisely f(c). In such cases the, the limit can be evaluated by direct
substitution. Hence, we can evaluate limits analytically as

lim
x→c

f(x) = f(c)

This applies to functions that are continuous at the point x = c. The following theorem gives
some basic properties of Limits:

Theorem 12.2.3. Let b and c be real numbers, let n be a positive integer, and let f and g be
functions with the following limits.

lim
x→c

f(x) = L and lim
x→c

g(x) = K

• limit of a constant function limx→c b = b

• Limit of the identity function f(x) = x limx→c x = c

• Limit of a term of a polynomial limx→c x
n = cn

• Limit involving a radical function limx→c
n
√
x = n
√
c
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• Multiplication by a scalar quantity limx→c[bf(x)] = bL

• Limit raised to a power limx→c[f(x)]
n = Ln

• Product of two limits limx→c[f(x)g(x)] = LK

• Sum or di�erence of two limits limx→c[f(x)± g(x)] = L±K

• Quotient of two limits limx→c[
f(x)
g(x)

] = L
K
, provided K 6= 0

Example 12.2.6. Evaluate the following limits

i) lim
x→2
−5 ii) lim

x→−1
(x+ 7) iii) lim

x→3
(5x2 − 2x+ 9) iv) lim

x→0

√
x2 − 3x+ 2

Sol: Using analytic method, we have

i) limx→2−5 = −5

ii) limx→−1(x+ 7) = (−1) + 7 = 6

iii) limx→3(5x
2 − 2x+ 9) = 5(3)2 − 2(3) + 9 = 48

iv) limx→0

√
x2 − 3x+ 2 =

√
(0)2 − 3(0) + 2 =

√
2

From the above example, we see how easy it is to obtain limits by simply applying our theo-
rem above. We just substitute directly, provided the function remains de�ned for that direct
substitution.

Example 12.2.7. Evaluate the following limits

i) lim
x→1

x2 + x+ 2

x+ 1
ii) lim

x→1

x3 − 1

x− 1
iii) lim

x→−3

x2 + x− 6

x+ 3
iv) lim

x→0

√
x+ 1− 1

x

Sol: We use analytic methods.

i) Here, a direct substitution holds as the function is still de�ned for x = 1

lim
x→1

x2 + x+ 2

x+ 1
=
(1)2 + (1) + 2

(1) + 1

=
4

2
=2

ii) Here, a direct substitution does NOT hold as the function is unde�ned for x = 1. Hence,
we �rst factorise and then cancel out the common. Then we can substitute in the resulting
expression.

lim
x→1

x3 − 1

x− 1
= lim

x→1

(x− 1)(x2 + x+ 1)

x− 1

= lim
x→1

(x2 + x+ 1)

=(1)2 + (1) + 1

=1 + 1 + 1

=3
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iii) Again, direct substitution does NOT hold as the function f(x) = x2+x−6
x+3

is unde�ned for
x = −3. Hence, we factorise and then cancel out some common factors.

lim
x→−3

x2 + x− 6

x+ 3
= lim

x→−3

(x+ 3)(x− 2)

x+ 3

= lim
x→−3

(x− 2)

=(−3)− 2

=− 5

iv) Again, direct substitution does NOT hold as the function f(x) =
√
x+1−1
x

is unde�ned for
x = 0. Hence, we need to rationalize the numerator.

lim
x→0

√
x+ 1− 1

x
= lim

x→0

√
x+ 1− 1

x
×
√
x+ 1 + 1√
x+ 1 + 1

= lim
x→0

(
√
x+ 1− 1)(

√
x+ 1 + 1)

x(
√
x+ 1 + 1)

= lim
x→0

(x+ 1)− 1

x
√
x+ 1 + 1

= lim
x→0

x

x
√
x+ 1 + 1

= lim
x→0

1√
x+ 1 + 1

=
1√

(0) + 1 + 1

=
1

1 + 1

=
1

2

Limits of Trigonometric Functions

Let c be a real number in the domain of a given trigonometric function. Then:

i) lim
x→c

sinx = sin c ii) lim
x→c

cosx = cos c iii) lim
x→c

tanx = tan c

iv) lim
x→c

secx = sec c ii) lim
x→c

cscx = csc c iii) lim
x→c

cotx = cot c

Example 12.2.8. evaluate the following limits.

i) lim
x→0

sinx ii) lim
x→π

(x cosx) iii) lim
x→0

tan2 x

Sol: The results of the theorem above applies to this case. As before, we can have a direct
substitution.
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i) Hence, limx→0 sinx = sin 0 = 0

ii) We separate the two functions.

lim
x→π

(x cosx) =
(
lim
x→π

x
)(

lim
x→π

cosx
)

=(π)(cosπ)

=(π)(−1)
=− π

iii) We uses product of a limit.

lim
x→π

tan2 x = lim
x→π

(tanx)2

=
(
lim
x→π

tanx
)(

lim
x→π

tanx
)

=(tanπ)(tanπ)

=(0)(0)

=0

Two Special Trigonometric Limits

The following two limits are special cases. We will not prove them, but we must know them as
we shall use them often. For a proof, see The Squeeze Theorem:

(i) lim
x→0

sinx

x
= 1 (ii) lim

x→0

1− cosx

x
= 0

Example 12.2.9. Evaluate the following limits

i) lim
x→0

tanx

x
ii) lim

x→0

sin 4x

x
iii) lim

θ→0

3(1− cos θ)

θ

Sol: We see that direct substitution will not apply here.
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i) Direct substitution gives a zero in the denominator which is indeterminate. Therefore,

lim
x→0

tanx

x
= lim

x→0

(
1

x

)(
tanx

1

)
= lim

x→0

(
1

x

)(
sinx

cosx

)
= lim

x→0

(
sinx

x

)(
1

cosx

)
=

(
lim
x→0

sinx

x

)(
lim
x→0

1

cosx

)
=(1)

(
1

cos 0

)
=(1)(1)

=1

ii) Direct substitution gives a zero in the denominator which is indeterminate. Thus,

lim
x→0

sin 4x

x
=1× lim

x→0

sin 4x

x

=
4

4
× lim

x→0

sin 4x

x

=
4

4

(
lim
x→0

sin 4x

x

)
=4

(
lim
x→0

sin 4x

4x

)
=(4)(1)

=4

iii) Using the special Trig Limit, lim
θ→0

3(1− cos θ)

θ
= 3

(
lim
θ→0

1− cos θ

θ

)
= 3(0) = 0

Limits at In�nity:

If f(x) is a function and c is a real number in the domain of f such that

lim
x→c

= ±∞

then x = a is a vertical asymptote to the curve y = f(x).

On the other hand, if f(x) is a function and L is a real number of such that

lim
x→∞

= L or lim
x→−∞

= L

then y = L is a horizontal asymptote to the curve y = f(x).
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Note: The following results hold for the limits at in�nity

−i) lim
x→∞

1

x2
= 0 ii) lim

x→−∞

1

x2
= 0 iii) lim

x→0−

1

x2
=∞ iv) lim

x→0+

1

x2
=∞

−i) lim
x→∞

1

x
= 0 ii) lim

x→−∞

1

x
= 0 iii) lim

x→0−

1

x
= −∞ iv) lim

x→0+

1

x
=∞

Example 12.2.10. Evaluate the following limits.

i) lim
x→∞

x+ 1

x2 + 1
ii) lim

x→−∞

x3 + x2 − 2x− 11

x3 − 7
iii) lim

x→∞

x3 + 2

x2 + 1

Sol:

i) lim
x→∞

x+ 1

x2 + 1
= lim

x→∞

x
(
1 + 1

x

)
x2
(
1 + 1

x2

)
= lim

x→∞

(
1

x

)(
1 + 1

x

1 + 1
x2

)
=

(
lim
x→∞

1

x

)(
lim
x→∞

1 + 1
x

1 + 1
x2

)
=(0)

(
1 + 0

1 + 0

)
=0

ii) lim
x→−∞

x3 + x2 − 2x− 11

x3 − 7
= lim

x→−∞

x3
(
1 + 1

x
− 2

x2
− 11

x3

)
x3
(
1− 7

x3

)
= lim

x→−∞

(
x3

x3

)(
1 + 1

x
− 2

x2
− 11

x3

1− 7
x3

)
= lim

x→−∞

(
1 + 1

x
− 2

x2
− 11

x3

1− 7
x3

)
=

(
1 + 0− 0− 0

1− 0

)
=
1

1
=1
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iii) lim
x→∞

x3 + 2

x2 + 1
= lim

x→∞

x3
(
1 + 2

x3

)
x2
(
1 + 1

x2

)
= lim

x→∞

(
x3

x2

)(
1 + 2

x3

1 + 1
x2

)
= lim

x→∞
(x)

(
1 + 2

x3

1 + 1
x2

)
=
(
lim
x→∞

x
)(

lim
x→∞

1 + 2
x3

1 + 1
x2

)
=(∞)

(
1 + 0

1 + 0

)
=∞

12.3. Continuity of Functions

In Mathematics, the term continuity has much the same meaning as it has in everyday usage.
To say that a function is continuous, at x = c means that there is no interruption in the graph
of y = f(x) at c. This means that its graph is unbroken at x = c and there are no holes, jumps
or gaps. However, below is the de�nition of continuity that is acceptable in mathematics.

De�nition 12.3.1. A function f is continuous at a point c if the following three conditions
are satis�ed.

1. f(c) is de�ned. ie, the function f(x) is de�ned when x = c

2. limx→c f(x) exists. ie, the limit of f(x) exists at x = c

3. limx→c f(x) = f(c)

De�nition 12.3.2. A function f(x) is continuous at on an open interval (a, b) if it is
continuous at each point in the interval. If a function is continuous on the entire real line,
R = (−∞,∞), then it is everywhere continuous

Example 12.3.1. Discuss the continuity of the following functions

a) f(x) =
1

x
b) g(x) =

x2 − 1

x− 1
c) h(x) = cos x d) f(x) =

{
x2 − 1 if x < 3;
x− 2 if x ≥ 3.

Sol:

a) For f(x) = 1
x
, the domain, Df = {x| x 6= 0, x ∈ R}. See the graph below. We see that the

function is continuous for all points in its domain. At x = 0, the function is discontinuous. It
has non-removable discontinuity. In other words, there is no way we can rede�ne f(0) to make
the function continuous at x = 0
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x

y

b) For g(x) = x2−1
x−1 , Dg = {x| x 6= 1, x ∈ R}. For all points in this domain, the function is

continuous. At x = 1, the function has a removable discontinuity, ie we can rede�ne f(1) to
make the function continuous at x = 1. See the graph below. Notice that if we de�ne f(1) = 2,
the function becomes continuous at x = 1.

−1 1

1

2

x

y

c) For h(x) = cos x, the domain is Dh = (−∞,∞) and we can see that it is continuous for all
points in Dh.

1
x

y

d) For this function, Df = (−∞,∞) and we see that it is continuous for all real numbers except
for x = 3. It has a non-removable discontinuity at x = 3. See the sketch below
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1

8

x

y

Example 12.3.2. Discuss the continuity of the following functions

a) f(x) =

{
x+ 1 if x ≤ 0;
x2 + 1 if x > 0.

b) g(x) =
√
2 + x c) h(x) =

√
1− x d) k(x) =

1

x+ 2

Sol:

a) For this function, Df = (−∞,∞) and we see that it is continuous for all real numbers. See
the graph below.

1 x

y

b) This function has domain Dg = [−2,∞). For all points in the open interval (−2,∞), the
function is continuous. Since the right limit at x = −2 exists and it is f(−2), we conclude that
the function is also continuous on the closed interval [−2,∞). see graph below

−2

2

x

y
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c) This function has domain Dh = (−∞, 1]. For all points in the open interval (−∞, 1), the
function is continuous. Since the left limit at x = 1 exists and it is f(1) = 0, we conclude that
the function is also continuous on the closed interval (−∞, 1]. see graph below

1

1
x

y

d) Exercise

Example 12.3.3. Discuss the continuity of the function f(x) =
√
1− x2

Sol: Exercise

Note 12.3.1. We take note of the following on continuity.

• All polynomial functions are continuous on R

• The radical functions and rational functions are continuous on their respective domains

• Trigonometric functions sinx and cosx are continuous on R

• The tangent function is not continuous for points x = nπ
2
where n is an odd integer

12.4. Di�erentiation

We have looked at the basic prerequisites for one to study calculus, the limit and continuity of
a function. The notion of a limit and continuity are very vital for one to understand calculus.
Now, we have now arrived at a crucial point in our study of calculus. Recall the notion of
gradient of a straight line. The concept of a limit can be used to extend the notion of a
gradient to curve. The limit used to de�ne the slope of a tangent line is also used to de�ne one
of the two fundamental operations of calculus �di�erentiation.

De�nition 12.4.1. The derivative of a continuous function f at a point x is denoted by f ′(x)
and de�ned as

f ′(x) = lim
h→0

f(x+ h)− f(x)
h
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The derivative f ′(x) of a function f(x), is itself a function. The process of �nding the derivative
of a function is called di�erentiation. A function f is di�erentiable at x if the derivative
exists at x and di�erentiable on an open interval (a,b) if it is di�erentiable at every point
in the interval.

In addition to the symbol f ′(x), other notations are used to denote the derivative of a function:

f ′(x) = y′ =
dy

dx
=

d

dx
[f(x)] = Dx[y]

Any of these notations are acceptable and can be used. We will mostly adopt the use of

f ′(x), y′ and
dy

dx

12.4.1 Di�erentiation From First Principle

This is the standard procedure used to determine the derivative of any function. The process
makes us of the de�nition of a derivative

Example 12.4.1. Find the derivative of the function f(x) = x3 + 2x from �rst principle

Sol:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

[(x+ h)3 + 2(x+ h)]− (x3 + 2x)

h

= lim
h→0

x3 + 3x2h+ 3xh2 + h3 + 2x+ 2h− x3 − 2x

h

= lim
h→0

3x2h+ 3xh2 + h3 + 2h

h

= lim
h→0

h(3x2 + 3xh+ h2 + 2)

h
= lim

h→0
(3x2 + 3xh+ h2 + 2)

=3x2 + 3x(0) + (0)2 + 2

=3x2 + 2

The approach above can be used to determine the derivative of any polynomial function. All
di�erentiable functions that we will consider in our study of calculus can have their derivatives
determined from �rst principle. This approach, however, is not always straight forward for
some functions as determining the limit can be di�cult at times. Hence, we will analyse other
methods later.

Example 12.4.2. Di�erentiate the function f(x) =
√
x+ 1 from �rst principle.
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Sol:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

√
(x+ h) + 1−

√
x+ 1

h

= lim
h→0

√
(x+ h) + 1−

√
x+ 1

h
×
√

(x+ h) + 1 +
√
x+ 1√

(x+ h) + 1 +
√
x+ 1

= lim
h→0

(√
(x+ h) + 1−

√
x+ 1

)(√
(x+ h) + 1 +

√
x+ 1

)
h
(√

(x+ h) + 1 +
√
x+ 1

)
= lim

h→0

[(x+ h) + 1]− (x+ 1)

h
(√

(x+ h) + 1 +
√
x+ 1

)
= lim

h→0

h

h
(√

(x+ h) + 1 +
√
x+ 1

)
= lim

h→0

1√
(x+ h) + 1 +

√
x+ 1

=
1√

(x+ 0) + 1 +
√
x+ 1

=
1

2
√
x+ 1

Example 12.4.3. Di�erentiate the function g(x) = 1
x+1

from �rst principle

Sol:

g′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
(x+h)+1

− 1
x+1

h

= lim
h→0

(x+1)−(x+h+1)
(x+h+1)(x+1)

h

= lim
h→0

−h
h(x+ h+ 1)(x+ 1)

= lim
h→0

−1
(x+ h+ 1)(x+ 1)

=
−1

(x+ 0 + 1)(x+ 1)

=− 1

(x+ 1)2

The two examples above show the technique for di�erentiating from �rst principle for radical
and rational functions respectively.
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12.4.2 Basic Di�erentiation Rules

In this section we look at di�erentiation rules that allow us to �nd derivatives without the
direct use of the limit de�nition.

1. The Constant Rule: The derivative of a constant is 0. That is, if c ∈ R, then

d

dx
[c] = 0

Example 12.4.4. Di�erentiate the following functions

i) y = 7 ii) f(x) = 0 iii) s(t) = −3 iv) y = 3π2

Sol: All functions here are constants

i)
dy

dx
= 0 ii) f ′(x) = 0 iii) s′(t) = 0 iv) y′ = 0

2. The Power Rule: If n is a rational number, then the function f(x) = xn is di�erentiable
and

f ′(x) = nxn−1

Example 12.4.5. Di�erentiate the following functions

i) y = x3 ii) f(x) = x iii) s(t) =
3
√
x2 iv) g(x) = 1

x5

Sol: We use the power rule

i)
dy

dx
= 3x2 ii) f ′(x) = 1 iii) s′(t) =

3

2
x

1
2 =

3
√
x

2
iv) g′(x) = −5x−4 = − 5

x4

3. The constant Multiple Rule: If f is a di�erentiable function and c is a real number,
then cf is also di�erentiable and

d

dx
[cf(x)] = cf ′(x)

Example 12.4.6. Di�erentiate y = 2
x
with respect to x.

Sol: Using the constant multiple rule

dy

dx
=

d

dx
[
2

x
] = 2

d

dx
[
1

x
] = 2

d

dx
[x−1] = 2(−x−2) = − 2

x2

4. The Sum and Di�erence Rule: Let u(x) and v(x) be two di�erentiable functions of
x. If f(x) = u(x) + v(x), then

f ′(x) = u′(x) + v′(x) Sum Rule

If f(x) = u(x)− v(x), then
f ′(x) = u′(x)− v′(x) Di�erence Rule
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Example 12.4.7. Di�erentiate y = x3 − 4x+ 5

Sol: Using the sum and di�erence rule, we di�erentiate term by term

dy

dx
= 3x2 − 4 + 0 = 3x2 − 4

5. The Product Rule: Let u(x) and v(x) be two di�erentiable functions of x. If the
function f(x) = u(x)v(x) is the product of u(x) and v(x), then

f ′(x) = u(x)v′(x) + v(x)u′(x)

Example 12.4.8. Di�erentiate the function f(x) = (2x− x4)(x3 − x− 12)

Sol: Use the product rule: Let u(x) = 2x−x4 and v(x) = x3−x−12 Then, u′(x) = 2−4x3
and v′(x) = 3x2 − 1. Thus

f ′(x) =u(x)v′(x) + v(x)u′(x)

=(2x− x4)(3x2 − 1) + (x3 − x− 12)(2− 4x3)

=6x3 − 2x− 3x6 + x4 + 2x3 − 2x− 24− 4x6 + 4x4 + 48x3

=− 7x6 + 5x4 + 56x3 − 4x− 24

6. The Quotient Rule: Let u(x) and v(x) be two di�erentiable functions of x. If the

function f(x) = u(x)
v(x)

is the quotient of u(x) and v(x), then

f ′(x) =
v(x)u′(x)− u(x)v′(x)

[v(x)]2

Example 12.4.9. Find the derivative of the function f(x) = x2−
√
x+1√
x

Sol: Let u(x) = x2 −
√
x+ 1 and v(x) =

√
x. Then u′(x) = 2x − 1

2
√
x+1

and v′ = 1
2
√
x
.

Using the Quotient Rule, we have

f ′(x) =
v(x)u′(x)− u(x)v′(x)

[v(x)]2

=
(
√
x)
(
2x− 1

2
√
x+1

)
−
(
x2 −

√
x+ 1

) (
1

2
√
x

)
(
√
x)

2

=
1

2

[
3
√
x+

1

x
√
x2 + x

]

Example 12.4.10. Di�erentiate y = 3x−1
x2+5x
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Sol: Let u(x) = 3x− 1 and v(x) = x2 + 5x. Then u′(x) = 3 and v′ = 2x+ 5. Using the
quotient rule, we have

dy

dx
=
v(x)u′(x)− u(x)v′(x)

[v(x)]2

=
(x2 + 5x)(3)− (3x− 1)(2x+ 5)

[x2 + 5x]2

=
3x2 + 15x− 6x2 − 13x+ 5

(x2 + 5x)2

=
−3x2 + 2x+ 5

(x2 + 5x)2

Derivatives of Trigonometric Functions

We start with the derivative of the sin and cos functions. The derivatives for the other Trigono-
metric functions will be derived from these two using the discussed properties of derivatives.

Example 12.4.11. Di�erentiate the following functions from �rst principle

i) f(x) = sinx ii) g(x) = cos x

Sol:

i) By de�nition;

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

sin(x+ h)− (sinx)

h

= lim
h→0

sinx cosh+ cosx sinh− sinx

h

= lim
h→0

cosx sinh− (sinx)(1− cosh)

h

= lim
h→0

[
(cosx)

(
sinh

h

)
− (sinx)

(
1− cosh

h

)]
=(cosx)

(
lim
h→0

sinh

h

)
− (sinx)

(
lim
h→0

1− cosh

h

)
=(cosx)(1)− (sinx)(0)

= cosx

Therefore, if f(x) = sinx, then f ′(x) = cos x

ii) Exercise: Show using �rst principle that if g(x) = cos x, then g′(x) = − sinx.

Example 12.4.12. Di�erentiate the following functions

i) y = 2 sin x ii) y =
cosx

5
iii) y = x2 + 3 cosx
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Sol:

i) dy
dx

= 2 cos x ii) y = cosx
5

= 1
5
cosx =⇒ dy

dx
= −1

5
sinx iii) dy

dx
= 2x− 3 sinx

Example 12.4.13. Find the derivative for each of the following

i) y = x3 sinx ii) y =
cosx

x2
iii) y = sinx cosx iv) y =

√
x− 2

sinx

Sol:

i) Let u(x) = x3 and v(x) = sin x. Then u′(x) = 3x2 and v′(x) = cos x. Using product rule,

dy

dx
=uv′ + vu′

=(x3)(cosx) + (sin x)(3x2)

=x3 cosx+ 3x2 sinx

=x2 (x cosx+ 3 sinx)

ii) Let u(x) = cos x and v(x) = x2. Then u′(x) = − sinx and v′(x) = 2x. By quotient rule,

dy

dx
=
vu′ − uv′

v2

=
(x2)(− sinx)− (cosx)(2x)

[x2]2

=
−x2 sinx− 2x cosx

x4

=
−x(x sinx+ 2 cosx)

x4

iii) Let u(x) = sin x and v(x) = cos x. Then u′(x) = cos x and v′(x) = − sinx. By product
rule

dy

dx
=uv′ + vu′

=(sinx)(− sinx) + (cos x)(cosx)

=− sin2 x+ cos2 x

=cos2 x− sin2 x

=cos 2x

iv) Let u(x) =
√
x− 2 and v(x) = sinx. Then u′(x) = 1

2
√
x−2 and v′(x) = cos x. By quotient
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rule,

dy

dx
=
vu′ − uv′

v2

=
(sinx)( 1

2
√
x−2)− (

√
x− 2)(cosx)

[sinx]2

=

sinx
2
√
x−2 − (

√
x− 2)(cosx)

[sinx]2

=
sinx− 2(x− 2) cosx

2(sin2 x)
√
x− 2

We can now use the quotient rule to determine the derivatives of the other trigonometric
functions.

Example 12.4.14. Di�erentiate f(x) = tan x

Sol: Recall that tanx = sinx
cosx

. Hence f(x) = tan x can be written as f(x) = sinx
cosx

and then use
the quotient rule.

Let u(x) = sinx and v(x) = cos x. Then u′(x) = cos x and v′(x) = − sinx. By quotient rule,

dy

dx
=
vu′ − uv′

v2

=
(cosx)(cosx)− (sinx)(− sinx)

[cosx]2

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x

=

(
1

cosx

)2

=(secx)2

=sec2 x

Therefore, if f(x) = tan x, then f ′(x) = sec2 x

Exercise: Show using quotient rule that if f(x) = cot x, then f ′(x) = − cscx.

Example 12.4.15. Di�erentiate f(x) = sec x

Sol: Recall that secx = 1
cosx

. Hence f(x) = secx can be written as f(x) = 1
cosx

and then use
the quotient rule.
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Let u(x) = 1 and v(x) = cos x. Then u′(x) = 0 and v′(x) = − sinx. By quotient rule,

dy

dx
=
vu′ − uv′

v2

=
(cosx)(0)− (1)(− sinx)

[cosx]2

=
sinx

cos2 x

=
1

cosx

sinx

cosx
=secx tanx

Therefore, if f(x) = secx, then f ′(x) = sec x tanx

Exercise: Show using quotient rule that if f(x) = cscx, then f ′(x) = − cscx cotx.

Example 12.4.16. Di�erentiate the following functions

i) y = 3x4 − 2 tanx ii) x2 secx

Sol:

i) dy
dx

= 12x3−sec2 x ii) dy
dx

= (x2)(secx tanx)+(secx)(2x) = x2 secx tanx+2x secx

The Chain Rule

Let us now discuss one of the most powerful rules of di�erentiation, the chain Rule. It enables
us to di�erentiate composite functions. The theorem is stated below.

Theorem 12.4.2. Let y = f(u) be a di�erentiable function of u. Further, if u = g(x) is itself
a di�erentiable function of x, then y = f(g(x)) is a di�erentiable function of x and

dy

dx
=
dy

du

du

dx

Example 12.4.17. Di�erentiate the function y = (x2 + x− 2)5

Sol: Let u = x2 + x− 2. Then y = u5, dy
du

= 5u4 and du
dx

= 2x+ 1. By Chain Rule

dy

dx
=
dy

du

du

dx
=(5u4)(2x+ 1)

=5u4(2x+ 1)

=5(x2 + x− 2)4(2x+ 1)

=5(2x+ 1)(x2 + x− 2)4
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Example 12.4.18. Given the function y = 3
√
(x2 − 1)2, �nd dy

dx

Sol: Note that 3
√

(x2 − 1)2 = (x2 − 1)
2
3 . Hence, y = (x2 − 1)

2
3 . Using the chain rule, we let

u = x2 − 1, then y = u
2
3 so that dy

du
= 2

3
u−

1
3 and du

dx
= 2x.

dy

dx
=
dy

du

du

dx

=

(
2

3
u−

1
3

)
(2x)

=

(
2

3

(
x2 − 1

)− 1
3

)
(2x)

=
4x

3 3
√
x2 − 1

Example 12.4.19. Di�erentiate the following

i) y = cos2 x ii) y = sin3 4x iii) y = tan2(x2 − 3x+ 1) iv) y = csc3(2x5 − 1)

Sol: We use the chain rule

i) Recall that y = cos2 x = (cosx)2. Thus,

dy

dx
=(2 cosx)(− sinx)

=− 2 cosx sinx

=− sin 2x

ii) Recall that y = sin3 4x = (sin 4x)3. Thus,

dy

dx
=(3 sin 4x)2(cos 4x)(4)

=12 sin2(4x) cos(4)

=12 sin2 4x cos 4x

iii) Recall that y = tan2(x2 − 3x+ 1) = [tan(x2 − 3x+ 1)]2. Thus,

dy

dx
=2[tan(x2 − 3x+ 1)]2 × sec(x2 − 3x+ 1)× (2x− 3)

=2(2x− 3) tan2(x2 − 3x+ 1) sec(x2 − 3x+ 1)

iv) Recall that y = csc3(2x5 − 1) = [csc(2x5 − 1)]3. Thus,

dy

dx
=3[csc(2x5 − 1)]2(− cot(2x5 − 1) csc(2x5 − 1))(10x4)

=− 30x4 csc3(2x5 − 1) cot(2x5 − 1)
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Implicit Di�erentiation

Most functions we have looked at now have been expressed explicitly, ie, they have been written
in such a way that y can easily be written as the subject of the formula. For example, y =
3x2 = 2x + 7 is an explicit function as y is an explicit function of x. Some functions can
not have y written explicitly as a function of x. For example y3 + y2 − 5xy − x2 = −4 is an
implicit function since y can not easily be made the subject of the formula. To di�erentiate
such functions, we use implicit methods. The following guidelines can be used:

• di�erentiate both sides with respect to x

• collect all terms involving dy
dx

on the left side of the equation, and all other terms to the
right side.

• factor dy
dx

out of the left side of the equation.

• solve for dy
dx

Example 12.4.20. Find dy
dx

given that y3 − y + xy − 3x+ 2x2 = −7

Sol: This is an implicit function since we can not make y the subject of the formula.

y3 − y + xy − 3x+ 2x2 =− 7

d

dx
[y3 − y + xy − 3x+ 2x2] =

d

dx
[−7]

3y2
dy

dx
− dy

dx
+ x

dy

dx
+ y − 3 + 4x =0

(3y2 − 1 + x)
dy

dx
+ y + 4x− 3 =0

(3y2 − 1 + x)
dy

dx
=− (y + 4x− 3)

dy

dx
= − (y + 4x− 3)

(3y2 − 1 + x)

Example 12.4.21. Find dy
dx

if sin
√
y = x

Sol: Making y the subject is not an easy task. We di�erentiate implicitly.

sin
√
y =x(

1

2
√
y
cos
√
y

)
dy

dx
=1

dy

dx
=

2
√
y

cos
√
y
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Higher Order Derivatives

Let y = f(x) denote a function. The derivative dy
dx

= f ′(x) is called the �rst order derivative.

Recall that f ′(x) is itself a function as well. Hence, it can be di�erentiated to obtain d2y
dx2

= f ′′(x),
which is called the second order derivative. Similarly, we can di�erentiate f ′′(x) to obtain the

third order derivative d3y
dx3

= f ′′′(x).

In general then, if y = f(x) is a di�erentiable function, then we can obtain the nth order
derivative by di�erentiating f(x) n times. Hence, the nth order derivative has the notation
given below:

dny

dxn
= yn = fn(x) =

dn

dxn
[f(x)] = Dn

x [y]

Example 12.4.22. Given the function f(x) = x4 − 3x2 + 12, �nd f (4)(x), the fourth order
derivative.

Sol: f ′(x) = 4x3 − 6x. Di�erentiating further,we have f ′′(x) = 12x2 − 6, f ′′′(x) = 24x so that
f (4)(x) = 24.

Example 12.4.23. Find d3y
dx3

given that y = sin(x2).

Sol:

dy
dx

= 2x cos(x2)

d2y
dx2

= 2[x(−2x sin(x2)) + cos(x2)] = 2 cos(x2)− 4x2 sin(x2)

d3y
dx3

= 2[−4x sin(x2)− 2x2 cos(x2)2x− sin(x2)2x] = 2[−6x sin(x2)− 4x3 cos(x2)]

Example 12.4.24. Find d2y
dx2

given that x2 + y2 = 25

Sol: di�erentiate implicitly

2x+ 2y dy
dx

= 0 =⇒ dy
dx

= −x
y
. Therefore, using the quotient rule,

d2y

dx2
=−

[
(y)(1)− (x)( dy

dx
)

y2

]

=−

[
(y)(1)− (x)(−x

y
)

y2

]

=− x2 + y2

y3

− 25

y3
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Derivatives of Exponential Functions

Let f(x) = ex. We can �nd the derivative of the exponential function from �rst principle as
shown below.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

ex+h − ex

h

= lim
h→0

exeh − ex

h

= lim
h→0

ex
(
eh − 1

)
h

= lim
h→0

(ex)

(
eh − 1

h

)
=(ex)

(
lim
h→0

eh − 1

h

)
=(ex)(1)

=ex

Therefore, if f(x) = ex, then the derivative is given as f ′(x) = ex

Example 12.4.25. Di�erentiate the following

i) y = e3x ii) y = 5e−x
2

iii) y = x2 − e
√
x−1 iv) y = xesinx v) y =

e−x + 1

secx

Sol:

i) Let u = 3x. Then y = eu so that du
dx

= 3 and dy
du

= eu. By the chain Rule,

dy

dx
=
dy

du

du

dx
=(3)(eu)

=3e3x

ii) Let u = −x2. Then y = 5eu so that du
dx

= −2x and dy
du

= 5eu. By the chain Rule,

dy

dx
=
dy

du

du

dx
=(−2x)(5eu)
=− 2xe−x

2

iii) Similarly, applying the chain rule and the sum/di�erence rule, we have

dy

dx
=2x− 1

2
√
x
e
√
x−1

=
4x
√
x− e

√
x−1

2
√
x
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iv) We use the product rule together with the chain rule.

dy

dx
=(x)

[
(cosx)esinx

]
+
(
esinx

)
(1)

=x cosxesinx + esinx

=(x cosx+ 1)esinx

v) Exercise [Hint: Use the quotient Rule and the Chain Rule]

Derivatives of Logarithmic Functions

We start with the natural logarithmic function, f(x) = ln x. We will di�erentiate this function
implicitly. Let y = lnx. Converting this to exponential form, we have x = ey. Hence, using
implicit di�erentiation, we have

x =ey

1 =ey
dy

dx
dy

dx
=

1

ey

dy

dx
=
1

x
since ey = x

Therefore, if f(x) = lnx, then the derivative is given as f ′(x) =
1

x

Example 12.4.26. Find the derivative for each of the following functions

i) y = x3 lnx ii) y = log10(3x
2 − 4) iii) y =

ln
√
x

x2
iv) y = xx v) y = 23x

Sol:

i) Let u = x3, v = lnx. Then u′ = 3x2 and v′ = 1
x
. By the product rule, we have

dy

dx
=(u)(v′) + (v)(u′)

=(x3)

(
1

x

)
+ (lnx)(3x2)

=x2 + 3x2 lnx

ii) We change the base to the natural logarithm:

y = log10(3x
2 − 4)

=
ln(3x2 − 4)

ln 10

=
1

ln 10
ln(3x2 − 4)
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We can di�erentiate the function y = ln(3x2− 4). Let u = 3x2− 4. Then y = u so that dy
du

= 1
u

and du
dx

= 6x. By the Chain Rule, we have

dy

dx
=
dy

du

du

dx

=

(
1

u

)
(6x)

=

(
1

3x2 − 4

)
(6x)

=
6x

3x2 − 4

Hence, for y =
1

ln 10
ln(3x2 − 4),

dy

dx
=

(
1

ln 10

)(
6x

3x2 − 4

)
=

6x

(ln 10)(3x2 − 4)

iii) Let u = ln
√
x and v = x2. Then, by chain rule, u′ = 1

2x
and v′ = 2x. By quotient rule,

dy

dx
=
vu′ − uv′

v2

=
(x2)

(
1
2x

)
− (ln

√
x)(2x)

x4

=
x
2
− 2x ln

√
x

x4

=
1− 2 lnx

2x3

iv) We take the natural log on both sides, then di�erentiate implicitly. y = xx =⇒ ln y =
lnxx =⇒ ln y = x lnx. Di�erentiating this implicitly, we have

ln y =x lnx

1

y

dy

dx
=(x)(

1

x
) + (ln x)(1)

1

y

dy

dx
=1 + ln x

dy

dx
=y(1 + ln x)

dy

dx
=(xx) (1 + lnx)

dy

dx
=xx(1 + ln x)

v) Exercise

12.4.3 Applications of Di�erentiation

Di�erential calculus can be applied to numerous problems in applied �elds. We start with its
application to the Tangents and Normal to curve.
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Tangents and Normal to a curve:

If y = f(x) is an equation of a curve, then the derivative dy
dx

= f ′(x) is the gradient function as
it gives the gradient of the tangent to the curve at any given point where the derivative exists.

Example 12.4.27. Find the gradient of the tangent to the curve y = 1
x
at the point where

x = −1. Hence, �nd the equation of this tangent and the corresponding normal.

Sol: dy
dx

= − 1
x2
. Hence, the gradient at x = −1 is given as dy

dx
|x=−1 = − 1

(−1)2 = −1. Hence, the
equation of the tangent is

y − y1 =m(x− x1)
y − (−1) =− 1(x− (−1))

y + 1 =− x− 1

y =− x− 2 is the equation of the tangent line at x = −1

Normal: Recall that the gradient of the normal is − 1
m

= − 1
(−1) = 1

y − y1 =−
1

m
(x− x1)

y − (−1) =1(x− (−1))
y + 1 =x+ 1

y =x is the equation of the normal line at x = −1

Example 12.4.28. Find equation of the tangent to the curve x2 + y2 = 10 at the point (1, 3).

Sol: Di�erentiate implicitly to get 2x+2y dy
dx

= 0 =⇒ dy
dx

= −x
y
. Gradient at (1, 3): dy

dx
|(1,3) = −1

3

y − y1 =m(x− x1)

y − 3 =− 1

3
(x− 1)

3y − x =10

Example 12.4.29. Find the equation of the tangent line to the curve y3 − 3xy2 + cosxy = 2
at the point (0, 1)

Sol: Di�erentiate implicitly to get: 3y2 dy
dx
− 3

(
x2y dy

dx
+ y2

)
+
(
y + x dy

dx

)
− sinxy = 0

Thus,
dy

dx
=

3y2 + y sin(xy)

3y2 − 6xy − x sin(xy)
so that,

dy

dx
|(0,1) =

3(1)2 + (1) sin(0)

3(1)2 − 6(0)− (0) sin(0)
= 1

Hence the required tangent is given by y − 1 = 1(x − 0) =⇒ y = x + 1 is the tangent line of
interest.
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Increasing and Decreasing Functions:

Let y = f(x) be a curve. On any interval where dy
dx
> 0, the function y = f(x) is increasing

on this interval. If dy
dx
< 0, then the function is decreasing. If dy

dx
= 0, then the function has a

critical point or stationary point, where the function is neither increasing nor decreasing.

Example 12.4.30. Determine the range of values of x for which the function

y = x3 − 3x2 − 9x+ 4 is i) increasing ii) decreasing iii) stationary

Sol: The derivative: dy
dx

= 3x2 − 6x− 9

i) We need dy
dx
> 0. So we solve this inequality.

3x2 − 6x− 9 >0

x2 − 2x− 3 >0

(x+ 1)(x− 3) >0

This function is increasing in the interval (−∞,−1) ∪ (3,∞) since dy
dx
> 0 in this interval

ii) We need dy
dx
< 0. ie, we need (x+ 1)(x− 3) < 0. Verify that the function is decreasing in

the interval (−1, 3).

iii) The stationary points are points where dy
dx

= 0. Hence, the stationary points are obtained

by solving the equation dy
dx

= 0, ie (x+ 1)(x− 3) = 0 =⇒ x = −1 and x = 3

Example 12.4.31. Determine the range of values of x for which the function

y = x is i) increasing ii) decreasing iii) stationary

Stationary Points: Maximum, Minimum and Point of In�exion

Let f(x) be a function. The curve y = f(x) has a stationary point where dy
dx

= 0. There are
three types of stationary points

• Maximum point: The derivative here moves from positive through zero to negative
values. Thus, at maximum, we have

dy

dx
= 0 and

d2y

dx2
< 0

• Minimum point: The derivative here moves from negative through zero to positive
values. Thus, at minimum, we have

dy

dx
= 0 and

d2y

dx2
> 0

• Point of In�exion: The derivative dy
dx

= 0 but has the same value on both sides of the
zero value
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To determine the nature of the stationary points, the following steps may be used:

• Determine the stationary points by solving dy
dx

= 0. This gives the values of x, which we
can use to determine the corresponding y values.

• Determine the values of d2y
dx2

. If the result is:

(a) positive, the point is a minimum one,

(b) negative, the point is a maximum one,

(c) zero, the point is indecisively unknown.

OR

• Determine the sign of the gradient of the curve just before and just after the stationary
points. If the sign change for the gradient of the curve is:

(a) positive to negative, the point is a maximum one

(b) negative to positive, the point is a minimum one

(c) positive to positive or negative to negative, the point is a point of in�exion

Example 12.4.32. Find the nature of the stationary points on the curve y = 4x3−3x2−6x+2

Sol: The derivative, dy
dx

= 12x2 − 6x − 6 and d2y
dx2

= 24x − 6. To get the critical values, set
dy
dx

= 0

dy

dx
=0

12x2 − 6x− 6 =0

2x2 − x− 1 =0

(2x+ 1)(x− 1) =0

Stationary points occur at x = −1
2
and at x = 1

Since d2y
dx2

∣∣∣
x=− 1

2

= 24(−1
2
)− 6 = −18 < 0, x = −1

2
gives a maximum point.

Since d2y
dx2

∣∣∣
x=1

= 24(1)− 6 = 18 > 0, x = 1 gives a minimum point.

Hence the turning points or stationary points of the curve y = 4x3 − 3x2 − 6x+ 2 are:

when x = −1
2
, then y = 4(−1

2
)3 − 3(−1

2
)2 − 6(−1

2
) + 2 = 15

4

when x = 1, then y = 4(1)3 − 3(1)2 − 6(1) + 2 = −3

The points are: (−1
2
, 15

4
) which is a maximum point and (1,−3) which is a minimum point

For more on maximum and other applications of calculus, see the references.
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12.5. Integral Calculus

See the References or consult Mr. Mulenga F.

Exercise 15

1. Evaluate the following limits:

(a) lim
x→2

(3x2+x−5) (b) lim
x→π

tanx (c) lim
x→1

√
x+ 2 (d) lim

x→0

√
x+ 9− 3

x
(e) lim

x→4

x− 4√
x− 2

(f) lim
x→−2

x3 + 8

x+ 2
(g) lim

x→−3

x2 + 5x+ 6

x+ 3
(h) lim

x→−2

2x2 + 5x+ 2

x2 + 9x+ 14
(i) lim

x→1

x3 + x2 − 8x+ 6

x− 1

2. Determine the following limits:

(a) lim
x→0

sin 3x

x
(b) lim

x→0
ex (c) lim

x→0
|x2 − x− 2| (d) lim

x→0

1

cosx
(e) lim

x→∞

x4 − 1

x3 + x2
.

(f) lim
x→0

x

3x2 − 2x
(g) lim

x→0

x2

2− x2
(h) lim

x→∞

3x2 + 7x3

x2 + 5x4
(i) lim

x→∞

3x3 + 2x

4− 2x2 − 7x3
(j) lim

x→∞

x+ 1

x2 + 1

3. Di�erentiate the following functions from �rst principle:

(a)f(x) = x2 − 4 (b) f(x) =
√
x− 4x2 (c)f(x) = 1

x
− 1

x2
(d) f(x) = 1√

x
+
√
2− x

e) f(x) =
√
x+ 2 (f) f(x) = 1√

1−x (g) f(x) = 1
x−4 (h) f(x) = sin 5x (i) f(x) = cos 2x

4. Di�erentiate the following with respect to x:

a) y = 2x3−7x−12 b) y = x2
√
x+ 2 c) y =

x2 − 4x+ 1

x4 − 2
d) y = (4x3−x2)6 e) y =

(x2 + 1)3

x
3
2

5. Di�erentiate the following with respect to x:

a) y = sec 2x b) y = cos3(5x) c) y = tan
√
x d) y = tan5(3x2−1) e) y =

sin(3x2 − 1)

cos(3− 2x3)

6. For each of the following functions, �nd the derivative f ′:

(a)f(x) = e3x
2

(b)f(x) = e2−5x (c)f(x) = esinx+cos 2x (d)f(x) = ex sin2(cosx) (e)f(x) = x lnx

7. For each of the following, �nd dy
dx
:

a) y = sin2(2x) cos3(5x) b) y = cos(ex) c) y = 2x
2

5x−1 d) y = ln(3x−2) e) y = ln(x2 sinx)

f) y = log3(x
2+ex) g) y = x3 lnx2 h) y = (x3+2x2−x−1)ex2 i) y = ex lnx j) y = 65x
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8. Using the rules of logarithms, simplify the following expressions. Hence, �nd f ′(x):

(a) f(x) = ln (x+1)16(2x2+x)8√
x2+4

(b) f(x) = ln (e2x+6)7
√
x+4

(e−x+ex)5

9. For each of the following functions, �nd dy
dx

and d2y
dx2

(a)y+xy+y = 2 (b)y3+xy2+x2−1 = 0 (c) sinx cos y = 2 (d)xey−x−1 = 0 (e)xy+yex−2x = 5

10. For each of the given functions below, �nd d2y
dx2

, d
3y
dx3

and d4y
dx4

:

(a)f(x) =
1

x2
(b)f(x) =

√
1− 2x2 (c)f(x) = 2 ln

√
x (d)f(x) = ln(3x−2) (e)f(x) = sin 4x

11. An open rectangular box is made from a square sheet of cardboard by removing a square
from each corner and joining the cut edges. If the cardboard is of edge 0.5m, �nd the
maximum volume of the box.

12. If the selling price x is related to the pro�t y by the equation y = 5000x−125x2, determine
the value of x for which the pro�t is maximum. Find that pro�t.

13. Find the critical values and determine the relative minimum and relative maximum for:

(a) f(x) = x3 + 3x2 − 12x+ 7 (b) f(x) = (x− 1)(x+ 1)(x+ 2)

14. The concentration C, of hydrogen ions in a solution is given by C = H + 10−5

H
. Find the

value of H for which the concentration is a minimum.

15. A farmer wants to make a rectangular enclosure using a wall as one side and a 120M of
fencing for the other three sides. Let x denote the width of the enclosure measured in
meters.

i) Find the area in terms of x and state the domain of the area function.

ii) Find the value of x that gives maximum area.

16. Integrate the following functions with respect to x:

a) x5 b) x
2
3 c)

1

x8
d)
√
x+3x2−5 e) (2x−1)2 f) 3

√
2− 5x g)

2

(4x+ 5)3
h)

1√
x+ 2

17. Evaluate the following integrals

a)

∫
x4 + x2 − 2x+

√
x

x2
dx b)

∫
x2 − x+ 2√

x
dx c)

∫
(2x− 1)5 dx d)

∫
1

(3− 2x)4
dx

18. Evaluate the following integrals:

a)

∫
x(x2 + 3)3 dx b)

∫
5ex dx c)

∫
(3x2 + e4x) dx d)

∫
x2 lnx dx e)

∫
x2

1 + x3
dx

f)

∫
2x√
x2 + 1

dx g)

∫
x2√

1− 2x3
dx h)

∫
2x+ 3

(x2 + 3x+ 4)3
dx i)

∫
2x

ex2c
dx j)

∫
sec2 x dx
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19. Evaluate the following integrals:

a)

∫
sin 2x dx b)

∫
secx tanx dx c)

∫
2 sinx dx d)

∫
csc2 x dx e)

∫
lnx dx f)

∫
x3 lnx dx

g)

∫
xe−x

2

dx h)

∫
ex cosx dx i)

∫
cos3 x dx j)

∫
x2 sinx dx k)

∫
(1− x)ex dx

20. By decomposing the following into partial fractions, �nd the following integrals:

a)

∫
x

x+ 1
dx b)

∫
1

x
dx c)

∫
x2 − 2

x2 − 1
dx d)

∫
x2 + x+ 5

x(x+ 1)2
dx e)

∫
x2 + 2x+ 4

(2x− 1)(x2 − 1)
dx

g)

∫
12x

(2− x)(3− x)(4− x)
dx h)

∫
x3 + x2 + 2

(x2 + 2)2
dx i)

∫
x2 + 2

x2 − 1
dx j)

∫
11x− 10

(x− 2)(x+ 1)
dx

21. Evaluate the following de�nite integrals:

(a)

∫ 3

−1
(x2+2x−1) dx (b)

∫ 2

1

xex
2

dx (c)

∫ π
3

π
6

cos 2t dt (d)

∫ π
6

0

sin2 x dx (e)

∫ 1

−3
x2(x3−1)6 dx

22. Find the area of the region bounded by the graphs of f(x) = −1
4
x2+1 and g(x) = 1

2
x2−3

for x in the interval [−1, 2].

23. Find the area of the region bounded by the curve y = x2 − 9 and the x− axis

24. In an idealized experiment, a colony of bacteria is introduced to a limited food supply. If
the rate of change in the number N of live bacteria with respect to time t is given by

N ′(t) = 6000t2 − 75t4,

Find the size of the population of the bacteria at time t if initially 1000 bacteria were
introduced to the food supply.

25. An object on the ground is projected vertically with initial velocity of 32m/s. If the
acceleration a(t) = −10.6m/s2, �nd:
(a) the velocity function, v(t)

(b) the distance at time t

(c) the height the object will attain

(d) the height of the object in 5 seconds
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13

Sample Exam Questions

July-2016

1. a) De�ne a function. [2]

b) Let f be a function de�ned as f(x) = x−1
x+1

.

(i) Find the domain of f(x) [2]

(ii) Find the range of f(x). [3]

(iii) Sketch the graph of f(x), clearly indicating the intercepts and asymptotes. [4]

c) Solve the following equations

(i) |3x− 6| = 12 [2]

(ii) |2x+ 1| = |4x− 3| [4]

(iii)
√
2x− 1−

√
x+ 3 = 1 [4]

d) Show that the function f(x) = 2x2 + 4 is not a one to one function. [4]

2. a) (i) When is a function f(x) said to be even? [2]

(ii) Determine whether f(x) = 2x3 + 4x is odd, even or neither. [3]

b) Let g(x) = 2
x+1

and f(x) = 3x− 2 be two functions.

(i) Find fog(x) and state its domain. [3]

(ii) Find (fog)−1(x) [3]

c) Find the solution sets for each of the following inequalities:

(i)
√
x− 2 ≤ 1 [4]

(ii) |6x− 11| < −5 [2]

d) Sketch the graph and state the range of f(x) =

{
1− x if x ≤ 0;
x+ 1 if x > 0.

[4]

e) Decompose the following fraction into its partial fractions
x

(x+1)(x2+2x+2)
[4]

3. a) Let g be a function de�ned as g(x) =
√
x2 − 3x+ 2.

(i) Find the domain of g(x) [3]

(ii) Sketch the graph of g(x). Hence, state its range. [3]
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b) Find dy
dx

for each of the following

(i) y = x3 ln 3x (ii) y =
(x2 + 1)4

sinx
(iii) y3 + xy2 + x2 = 1

[3,3,2]

c) The concentration C, of hydrogen ions in a solution is given by C = H + 10−5

H
. Find

the value of H for which the concentration is a minimum. [3]

d) solve the following equations

(i) 22x+1 = 3(2x)− 1 [2]

(ii) log2(x
2 − x+ 2) = 1 + 2 log2 x [3]

(iii) log3 x− 2 logx 3 = 1 [3]

4. a) Find the exact value, leaving your answer in surd form where necessary.

(i) sin 150◦ [2]

(ii) tan(−5π
3
) [2]

b) Prove the following identities

(i) 1
1−sinx +

1
1+sinx

= sec2 x [2]

(ii) (cscx− cotx)2 = 1−cosx
1+cosx

[3]

c) Solve each of the following for 0 ≤ θ ≤ 2π

(i) cos θ = sin 2θ [4]

(ii) 2 sin2 θ − cos θ − 1 = 0 [4]

d) (i)Express f(x) =
√
3 cosx− sinx in the form f(x) = r cos(x+ α) [4]

(ii) Sketch the graph of f(x) = 3 sin(x− π
2
). State the amplitude and period. [4]

5. a) Evaluate the following limits.

(i) lim
x→−3

x2 + 5x+ 6

x+ 3
(ii) lim

x→0

√
x+ 9− 3

x
(iii) lim

x→∞

x4 − 1

x3 + x2

[2,3,2]

b) Di�erentiate the function f(x) = 1√
x+1

from �rst principle. [4]

c) Determine the following integrals

(i)
∫
3x2 − 2x+ 1

x
+ 5 dx [2]

(ii)
∫

x2√
1−2x3 dx [3]

(iii)
∫

3
(x+1)(x+2)

dx [4]

d) Given the functionf(x) = ln (x+1)16(2x2+x)8√
x2+4

,

(i) Use the rules of logarithms to simplify f(x). [2]

(iii) Hence or otherwise, �nd f ′(x) [3]

END!
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July-2015

1. a) Given that X and Y are subsets of the universal set E, simplify the following as far
as possible:

(i) X − (Y −X)

(ii) X ′ ∪ (X ′ ∩ Y )′

b) Let R = (−∞,∞) be the universal set. Further, let A = (−8, 6], B = [4,∞) and
C = [0, 1), be subsets of the universal set, R. Find:

(i) A ∪B
(ii) (A ∩B)′.

(iii) C ′

c) Express the following rational numbers in the form a
b
where a and b are integers, with

b 6= 0.

(i) 0.1

(ii) 12.13.

2. a) Find the derivatives of the following functions:

(i) f(x) = 12x4 +
√
x− 2

x3

(ii) g(x) = x5+x
2
3−x3+x
x3

b) The line y = x+ 1 meets the curve y = x2 − x− 2 at the points A and B. Find the:

(i) coordinates of A and B

(ii) equations of the tangent lines at A and B

(iii) equations of the normal lines at A and B

c) Given the equation of the curve y = x(x− 2)2,

(i) �nd dy
dx

(ii) hence, �nd the coordinates of the point on the curve at which the gradient is
zero.

3. a) Given the polynomial function p(x) = x3 + 4x2 + x− 6;

(i) factorize completely p(x) = x3 + 4x2 + x− 6

(ii) Sketch the graph of the polynomial p(x)

(iii) Hence or otherwise, �nd the values of x for which x3 + 4x2 + x− 6 ≥ 0

b) Solve the following equations

(i) 3(2x− 5) + 2x ≤ 32 + x4

(ii) 2x2 − 11x+ 5 ≥ 0

c) Factorize completely x4 − 1

4. a) Given the polynomial f(x) = x3 + x2 − 5x− 2;

(i) Show that x− 2 is a factor of f(x).

(ii) solve the equation x3 + x2 = 5x+ 2
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b) The polynomial h(x) = 3x3+2x2−px+q is divisible by x−1, but leaves a remainder
of 10 when divided by x+ 1. Find the values of p and q.

c) Solve the following pair of simultaneous equations:

y − x = −2
2x2 − 10x = y − 3

5. a) Simplify the following as far as possible:

(i) (27
64
)
2
3

(ii) 9x
11
5 ÷ 3x

1
5 × 2x

b) (i) Given that x2 +4x− 2 = (x+ a)2 + b where a and b are constants, �nd the values
of a and b

(ii) Solve for x given that 2
√
x =
√
40

(iii) Rationalize the denominator and simplify

8

3 +
√
5
+
√
45

c) Given the quadratic function f(x) = 2x2 − x− 5,

(i) Complete the square of f(x) = 2x2 − x− 5

(ii) Determine the type of roots of the quadratic f(x) = 2x2 − x− 5

(iii) Sketch the graph of the given quadratic.

6. a) The line l1 has equation 2y = x − 3 and the line l2 has equation 5y + 2x − 18 = 0.
Another line, l3 is perpendicular to l1 and passes through the point (0, 3). Find:

(i) the gradient of l1

(ii) the coordinates of the point of intersection of l1 and l2.

(iii) the equation of l3

b) The points A and B have coordinates (2k, 1) and (9, k− 1) respectively where k is a
constant. Given that the gradient is 1

3
,

(i) Show that k = 3

(ii) Find the equation of the line through A and B.

c) Express
√
12 +

√
147−

√
27 in the form r

√
3 where r is a constant

END!

179



References

[1] Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, Inc., (2006)
9th Edition

[2] John Bird, Higher Engineering Mathematics, Elsevier Ltd, 6th Edition, (2006)

[3] Talbert J.F. and Heng H.H, Additional Mathematics-Pure and Applied, Pearson Education
South Asia Pte Ltd, 6th Edition (2010) 405-439.

[4] Backhouse J.K and Houldsworth S.P.T, Pure Mathematics, 72 (1985) 11-19.

[5] Kaufman J.E, College Algebra and Trigonometry, PWS Publishers, (1987)

[6] Attwood Greg e'tal, Edexcel AS and A Level Modular Mathematics (C1-C4), Pearson
Education. (2008)

[7] Ron Larson and Bruce H. Edwards, Calculus 9th Edition, Richard Stratton, 978-0-547-
16702-2, (2010)

[8] Lynn H. Loomis and Shlomo Sternberg, Advanced Calculus, Addison-Wesley Publishing
Company, Reading, Massachusetts, (1968)

[9] J. Dugundji, Topology, Wm. C. Brown Publishers, Dubuque, 1989.

[10] S.L Gupta and Nisha Rani, Fundamental Real Analysis, Vikas Publishing House Pvt. Ltd.,
New Delhi,(1976)

[11] Robert C.Wrede and Murray Spiegel, Advanced Calculus, Schaum's Outline Series,
McGraw-Hill Companies, Inc. 2nd Edition (2002)

[12] Stroud K.A and Dexter J.B, Engineering Mathematics 5th Edition, Industrial Press, Inc,
New York, (2001)

180


