The University of Zambia

Department of Mathematics & Statistics

2018/2019 Academic Year, Final Examinations

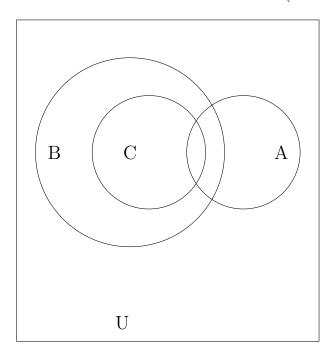
MAT1110: Foundation Mathematics & Statistics for Social Sciences (Deferred)

Friday, 13 December 2019

Time Allowed: 3 hours

Instructions:

- 1. There are **Seven** (7) questions in this examination paper. Attempt **any five** (5).
- 2. Indicate your **computer number** on all your answer booklets.
- 3. Full credit will only be given when all necessary working is shown.
- 4. Calculators are Not allowed.


This examination has (6) pages of questions.

1. (a) i. Let \mathbb{R} be the universal set, $A=(-\infty,3)$ and $B=[4,\infty)$. Find the set $(A\cup B)^c$,

and display your answer on the number line.

ii. Copy the Venn diagram below and shade the region represented by

$$A \cap (B \cap C^c)^c$$

(b) i. Express

$$-0 \cdot 266666 \cdots$$

in the form $\frac{a}{b}$, where a and b are integers with no common factor.

ii. Express

$$\frac{1-\sqrt{8}}{2+\sqrt{18}},$$

in the form $c + d\sqrt{2}$ where c and d are real numbers.

(c) Given that

$$f(x) = \frac{x+1}{x-1},$$

- i. State the domain and range of f(x).
- ii. Sketch the graph of f(x), labelling it clearly.
- iii. Hence, or otherwise, solve the inequality

$$f(x) \ge 0$$
.

[8, 7, 10]

- 2. (a) Let $f(x) = x^3 + ax^2 + bx + 6$. Given that f(x) gives a remainder of 20 when divided by x + 1, and also gives a remainder of 8 when divided by x 2, find the value of a and of b.
 - (b) Solve the following equation;

$$9^{x+1} - 28(3^x) + 3 = 0.$$

- (c) Given that $f(x) = \frac{3}{2}$ and $g(x) = 1 + \log_{\frac{1}{4}} \left(\frac{1}{x}\right)$,
 - i. Find the point of intersection of the two functions.
 - ii. On the same set of axes, sketch the graph of f(x) and of g(x).
- (d) Evaluate

$$\lim_{x \to 3} \frac{x^3 - 27}{3 - x}.$$

[6, 6, 8, 5]

3. (a) Solve the following equation for $0 \le x \le 2\pi$.

$$\cos^2 x + \left(\frac{\sqrt{3} - \sqrt{2}}{2}\right)\cos x - \frac{\sqrt{6}}{4} = 0.$$

(b) Prove each of the following identities:

i.

$$1 - 2\cos^2 x \equiv \frac{\tan^2 x - 1}{\tan^2 x + 1}.$$

ii.

$$\frac{\sin^2 x + 4\sin x + 3}{\cos^2 x} \equiv \frac{3 + \sin x}{1 - \sin x}.$$

(c) Sketch the graph of

$$f(x) = 1 - \cos x$$

for $0^{\circ} \le x \le 270^{\circ}$.

(d) Use the **first principle** to differentiate

$$f(x) = x^3.$$

[9, 8, 4, 4]

4. (a) Given that

$$3ye^{-2x} = 4x^2 + y^2 + 2,$$

find the value of $\frac{dy}{dx}$ at (0,2), leaving your answer in simplest form.

- (b) Given that $f(x) = 4x^3 + 2x^2 + 17x + 8$,
 - i. Express f(x) in the form

$$f(x) = Q(x)(x^2 + 4) + R(x),$$

where Q(x) is the quotient and R(x) is the remainder when f(x) is divided by $x^2 + 4$.

ii. Hence, evaluate

$$\int_{1}^{4} \frac{4x^{3} + 2x^{2} + 17x + 8}{x^{2} + 4} dx$$

leaving your answer in the form $a + \ln b$, where a and b are integers.

(c) Find the area of the region bounded by graph of $f(x) = \ln x$ and the lines y = 0, y = 1 and x = 0.

[6, 10, 9]

- 5. (a) i. When is a function f(x) said to be continuous at a point x = a.
 - ii. Determine whether

$$f(x) := \begin{cases} 7x - 2 & \text{if } x \ge 2, \\ 3x + 5 & \text{if } x < 2, \end{cases},$$

is continuous at x = 2.

(b) Given that

$$f(x) = \frac{x}{9 + x^2},$$

find the coordinates of the stationary point(s), and determine whether maximum, minimum or point of inflection.

(c) In a certain University,

65% of the students are full-time students,

55% of the students are female,

35% of the students are male full-time students ,

Find the probability that

- i. a student chosen at random from all the students in the University is a part-time student.
- ii. a student chosen at random from all the students in the University is a female and a part-time student.
- iii. a student chosen at random from all the female students in the University is a part-time student.

4

- 6. (a) It is given that 3 computers in a batch of 9 computers are faulty, but it is not known which 3. If two computers are selected at random, one at a time without replacement, find the probability that they are both faulty.
 - (b) In one month, a student recorded the lengths, to the nearest minute, of each of the lectures she attended. The table below shows her data and the calculations she made before drawing a histogram to illustrate these data. Find the value of a and of b, and the interval c.

Length of lecture (minutes)	50 - 53	54 - 55	c	60 - 67
Number of lectures	20	a	30	12
Frequency density	5	13	7.5	b

(c) i. Integrate

$$\int \frac{2x+1}{x^3-7x+6} \ dx.$$

ii. Evaluate

$$\int_0^{\frac{\pi}{4}} \sin^2 x \ dx.$$

[5, 5, 15]

- 7. (a) i. When is a function f(x) said to be even.
 - ii. Determine whether

$$f(x) = \frac{x^2 + 1}{x^3 - x},$$

is odd, even, or neither.

- (b) Given that $f(x) = -2x^2 3x + 2$,
 - i. Express f(x) in the form

$$f(x) = a(x - h)^2 + k.$$

- ii. Determine the interval(s) where f(x) is increasing and where it is decreasing.
- iii. Hence, or otherwise, sketch the graph of f(x), labelling it clearly.
- (c) The following are test marks for a group of 120 MAT1110 students.

Mass(g)	0 - 9	10 - 19	20 - 29	30 - 49	50 - 79
Number of letters	8	21	53	28	10

i. Complete the frequency distribution table below.

Mass(g)	Interval width	Frequency	Frequency density
-0.5 - 9.5	10	8	0.8
9.5 - 19.5	10	21	2.1

ii. Draw a histogram to show the distribution of the test marks.

[5, 12, 8]