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1

Functions

1.1. Relations

Definition 1.1.1 Let A and B be two sets. Let a ∈ A and

b ∈ B. Then the pair (a, b) is called an ordered pair. The

elements a and b are called coordinates. Two ordered pairs

(a, b) and (c, d) are equal, that is, (a, b) = (c, d) if and only if

a = c and b = d.

The set of all distinct ordered pairs whose first coordinate is in A

and the second coordinate is an element of B is called the Cartesian

product of A and B. The Cartesian product of A and B is denoted

by A×B. Thus,

A×B = {(a, b) : a ∈ A, b ∈ B}.

Example 1.1.0.1 Let A = {2, 3, 4} and B = {6, 7}. Then,

A×B = {(2, 6), (2, 7), (3, 6), (3, 7), (4, 6), (4, 7)}.

In general,
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A×B 6= B × A.

Definition 1.1.2 A relation R from a set X to a set Y is

a set of ordered pairs (x, y) such that for each x ∈ X, there

corresponds atleast one y ∈ Y.

We write xRy to mean that x is related y. We shall call X the

input set and Y the output set.

Generally speaking, a relation is simply a rule which connects two

elements from different sets.

1.1.1 Classification of Relations

Let R be a relation from X to Y.

Relations for which each element of the set X is mapped to a

unique element of the set Y are said to be one-to-one.

Example 1.1.1.1 Let X = {3, 5, 7} and Y = {6, 10, 14}, and

let the relation R from X to Y be defined by : ” is a factor

of”.Display this on an arrow diagram. Clearly, this is a one-

to-one.

A relation can map more than one element of the set X to the

same element of the set Y. Such a type of relation is said to be

many-to-one.
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Example 1.1.1.2 Let X = {4, 5, 7} and Y = {2, 3, 6}, and

let the relation R from X to Y be defined by : ” is greater

than”.Display this on an arrow diagram. Clearly, this is a

many-to-one.

A relation can map one element of the set X to more than one

element of the set Y. Such a type of relation is said to be one-to-

many.

Example 1.1.1.3 Let R be a relation from X to Y defined by
′ <′ given that X = {1, 2, 3, 4} and Y = {1, 3, 5}. Display this

on an arrow diagram. Clearly, this is a one-to-many.

The inverse of the relation ′ <′, defined in the previous example is

called ′ >′: and is given by

R−1 = inverse of R = {(3, 1), (3, 2), (5, 1), (5, 2), (5, 3), (5, 4)}

1.1.2 Domain, Range and Co-domain

Let R be a relation from X to Y.

1. The set of all values for which the relation is defined (set of

input values) is called the domain (D).

2. The range ( R ) is the set of all values that it can produce. It

is the set of output values.
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3. The co-domain of a relation is a set of values that includes

the range as described above, but may also include additional

values beyond those in the range.

Example 1.1.2.1 Let R be a relation from X to Y defined by
′ <′ given that X = {1, 2, 3, 4} and Y = {1, 3, 5}. Display this

on an arrow diagram and hence find the domain, range and

the co-domain.

1.2. Functions

Definition 1.2.1 A function from a set X to a set Y is a

set of ordered pairs (x, y) such that for each x ∈ X, there

corresponds a unique y ∈ Y.

Clearly, a function is a relation but the converse is not true. The

domain, range and the co-domain for a function are defined as for

a relation. Throughout this course, all functions will be defined on

the subset of R.

Since a function assigns every element x ∈ X to exactly one el-

ement in set Y, we will denote the output elements (images) by

y = f (x), where x is the input and is called the independent

variable and y is called the dependent variable. f (x) is read as

”f of x” or the value of f at x.
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Example 1.2.0.2 The function

f (x) =
x

2
+ 7

is the rule that takes a number, divides it by 2, and then adds

7 to the quotient. For example, if x = 4, f (4) = 9.

1.2.1 Classification of functions

Let f be a function from X to Y.

Functions for which each element of the set X is mapped to a

unique element of the set Y are said to be one-to-one.

Example 1.2.1.1 Let X = {3, 5, 7} and Y = {6, 10, 14}, and

let the relation R from X to Y be defined by : ” is a factor of”.

Display this on an arrow diagram. Since every input element

has a unique image, and so it is a function. Clearly this is

one-to-one.

A function can map more than one element of the set X to the

same element of the set Y. Such a type of function is said to be

many-to-one.

Example 1.2.1.2 Let X = {4, 5, 7} and Y = {3, 6}, and let

the relation R from X to Y be defined by : ” is greater than”.Display

this on an arrow diagram. Clearly, this is a many-to-one.
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Definition 1.2.2 A function f is one-to-one if and only if

f (a) = f (b) for any a and b in the domain means a = b.

Example 1.2.1.3 Let f (x) = 3x + 1. Show that f is one-to-

one.

Example 1.2.1.4 Which of the following are functions:

1. y = f (x) = −2x + 7

2. y2 = x

3. y = 4

4. y = x2.

Example 1.2.1.5 1. Given that f (x) = x2+5x−6, find f (3)

and f (−3).

2. Given that f (x) = 4x2−9x+17
x+7 , find f (5) and f (−4).

Example 1.2.1.6 For each of the following functions, find the

domain.

1. y = 4x2 + 7x− 19

2. y =
√
t− 5

3. y = 7
x(x−4)

4. y = 6x
(x−5)(x−9)
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Example 1.2.1.7 Find the range of the following functions

given that −2 ≤ x ≤ 2.

1. y = 2x

2. y = x2

3. y = 1
1−x

Listed below are examples of different functions.

1. Linear: f (x) = ax + c, a, c ∈ R.

2. Quadratic: f (x) = ax2 + bx + c, a, b, c ∈ R, a 6= 0.

3. Polynomial: f (x) = anx
n+an−1x

n−1+an−2x
n−2+ · · ·+a1x+

a0.

4. Rational: f (x) = x2−9
x+4 , x 6= −4.

5. Exponential: f (x) = ax, a 6= 0.

6. Logarithmic function f (x) = loga x

1.2.2 Inverse of a function

An inverse function is a function that ” reverses” another function.

This means that if the function f applied to an input x gives a

result of y, then applying its inverse function g to y gives the result

x, and vice versa. That is f (x) = y and iff g(y) = x.
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Example 1.2.2.1 Find the inverse of each of the following

functions, and each case state the range of f and the domain

of f−1.

1. f (x) = 3x + 1

2. f (x) = x−1
x+2, x 6= −2.

3. f (x) = 1
x−1, x 6= 1.

1.2.3 Composite functions

Definition 1.2.3 Given two functions f and g, the compos-

ite function, denoted by f og ( read f composed with g” or

”f of g”) is defined by

(f og) = f (g(x)).

In the definition above, we refer to g as the inside function and f

as the outside function.

When determining the domain for the composite function, the do-

main for the inside function and the domain for the resultant com-

posite function must be accounted for.

Example 1.2.3.1 Let f and g be two functions defined by

f (x) = 2x− 1 and g(x) = 3x. Find

1. (gof )(x)
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2. (fog)(x)

3. (fof )(x) = f 2(x)

4. (gog)(x) = g2(x)

Example 1.2.3.2 Find (g of )(x) if f (x) = 5
x+4 and g(x) =

3x
2x−1. State the domain of g of.

1.2.4 Odd and even functions

Definition 1.2.4 An even function is one which is unchanged

when the sign of its argument changes, f (−x) = f (x).

Examples of such function include f (x) = x2+2, f (x) = 3x4+x2.

Thus polynomials with even powers are even functions.

Definition 1.2.5 An odd function is a function such that f (−x) =

−f (x).

Examples of odd function include f (x) = 3x, f (x) = 2x3−x, that

is polynomials with odd powers of x.

Example 1.2.4.1 State whether each of the following func-

tions is even, odd or neither.

1. f (x) = x2+4
x3−x

2. f (x) = x4 − 3x2 + 7
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2

Polynomial Functions

2.1. Linear function

Definition 2.1.1 A function f is said to be linear if it is of

the form y = ax + b, where a and b are real numbers.

2.1.1 Linear equations and solutions

Definition 2.1.2 An equation is a statement that two alge-

braic expressions are equal.

They include

1. 3x− 5 = 7

2. x
3 + 3x

4 = 2.

3.
√

2x = 4.

To solve an equation in x means to find all values of x for which

the equation is TRUE. Such values are called solutions.
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2.1.2 Linear equations in one variable

Definition 2.1.3 A linear equation in one variable is an equa-

tion that can be written in the standard form

ax + b = 0,

where a and b are real numbers with a 6= 0.

A linear equation in x has exactly one solution. For example, from

ax + b = 0, we get that ax = −b, so that x = − b
a.

Example 2.1.2.1 Solve each of the following equations

1. 3x− 6 = 0

2. 5 + 5x = 15

3. 10− x = 11.

2.2. Equations involving fractional expressions

To solve an equation involving fractional expressions you can mul-

tiply every term in the equation by the least common denominator

(LCD) of the terms.

Example 2.2.0.2 Solve each of the following fractional equa-

tions

1. x
3 + 3x

4 = 2.
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2. 4x
5 −

x
2 = 9.

An equation with a single fraction on both sides can be cleared

of denominators by cross-multiplying, which is equivalent to

multiplying each side of the equation by the least common denom-

inator and then simplify.

Example 2.2.0.3 Cross-multiply to solve each of the follow-

ing fractional equations

1. 3y−2
2y+1 = 6y−9

4y+3.

2. 3x−6
x+10 = 3

4

2.2.1 Graphs of linear functions

Since any function can be represented by ordered pairs, therefore,

a graphical representation of the function is always possible. The

graph of an equation in the two variables x and y is the set of all

points (x, y) whose coordinates satisfy the equation.

To graph a linear function, substitute various values of x into the

equation and solve for y to produce some of the ordered pairs that

satisfy the equation.

Example 2.2.1.1 Draw the graph of each of the following by

plotting the points.

1. y = 2x− 1
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2. y = −x + 3

3. y = 4

4. x = 3.

2.3. Quadratic functions

Definition 2.3.1 A function f, in x, is said to be quadratic if

it is of the form f (x) = ax2 + bx + c, where a, b and c are real

numbers with a 6= 0.

2.3.1 Quadratic equations

Definition 2.3.2 A quadratic equation in the variable x is de-

fined as the equation of the form ax2 + bx + c = 0, where a, b

and c are constants with a 6= 0.

Such equations can be solved using the following methods:

1. Factorization

2. Quadratic formula. x = −b±
√
b2−4ac
2a

3. Completing the square

Example 2.3.1.1 1. Use factorization method to solve 3x2−
5x + 2 = 0.

2. By using the quadratic formula, solve 2x2 + 7x + 4 = 0.
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To solve a quadratic equation (ax2 + bx + c = 0) by completing

the square method, the following steps will be required.

1. If a does not equal 1, divide each side by a so that the coeffi-

cient of x2 is 1.

2. Rewrite the equation with the constant term on the right side.

3. Complete the square by adding the square of one-half of the

new coefficient of x to both sides.

4. Write the left side as a square and simplify the right side.

5. Finally, simplify both sides so that you can take square root

of both sides.

The following example will help us understand the above steps.

Example 2.3.1.2 Using completing the square method, solve

1. 3x2 − 5x + 2 = 0

2. 2x2 + 7x + 4 = 0.

By using the quadratic formula, we observe that, we obtain dif-

ferent solutions depending on the value of the radicand b2 − 4ac.

b2−4ac is called the discriminant of the quadratic equation. The

discriminant is used to determine the nature of solutions/roots of

a quadratic equation as follows:
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1. If b2 − 4ac > 0, then the quadratic equation has two distinct

real roots.

2. If b2− 4ac < 0, then the quadratic equation has no real roots

(has complex roots).

3. If b2− 4ac = 0, then the quadratic equation has one real root.

Example 2.3.1.3 Determine the nature of roots for the fol-

lowing equations:

1. 4x2 − 7x− 1 = 0

2. 4x2 + 12x + 9 = 0.

3. 5x2 + 2x + 1 = 0.

4. 9x2 − 16 = 0.

5. 2x2 + 2x− 2 = 4x.

2.4. Graph of a quadratic function

The following steps will be needed to be able to sketch the graphs

of quadratic functions.

1. Decide on the shape.

(a) When a > 0, the curve will be a ∪ shape.

(b) When a < 0, the curve will be a ∩ shape.
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2. Work out the points where the curve crosses the x− and

y−axes.

(a) Put y = 0 to find the point(s) where it crosses the x−axis.

(b) Put x = 0 to find the point where it crosses the y−axis.

Example 2.4.0.4 Sketch the graph of each of the following:

1. f (x) = x2 − 5x + 4.

2. f (x) = −2x2 − 7x + 4.

By the process of completing the square, all quadratic functions,

f (x) = ax2 + bx + c, a 6= 0, may be transposed into what will be

called the turning point form:

y = a(x− h) + k, where (h, k) is the turning poing.

We determine the x- and y- intercepts as before. i.e. by equation

y = 0 and x = 0 respectively.

Example 2.4.0.5 Sketch the graph of each of the following:

1. f (x) = x2 − 5x + 4.

2. f (x) = −2x2 − 7x + 4.

3. Let p(x) = −x2

10 + 50x−750 be the profit function in dollars

that a company earns as a function of x, number of prod-

ucts of a given type that are sold, and is valid for values
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x greater than or equal to 0 and less than or equal to 500.

Find the maximum loss and maximum profit.

2.5. Polynomial functions and rational functions

In this section, we will study polynomial functions and rational

functions.

Definition 2.5.1 A polynomial function is a function defined

by

f (x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · · + a1x + a0.

For instance, f (x) = x3 + 4x2 − x + 1 is a polynomial function,

and is called a third-degree, or cubic polynomial function because

the largest power is 3.

Definition 2.5.2 A rational function is a function defined by

the quotient of two polynomials.

For example,

f (x) =
7x

2x2 + 5

is a rational function.

If p is a polynomial function, then the values of x for which p(x)

is equal to 0, is called the zeros of p. For instance, −1 is a zero of

p(x) = 2x3 − x + 1 because p(−1) = 0.
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Much of this section concerns finding the zeros of polynomial func-

tions. Sometimes the zero of a polynomial function are determined

by dividing one polynomial by the another.

2.5.1 Division of polynomials

Consider the polynomial x3− 2x2 + 4x− 3. Divide this by x− 3.

Using long division as in arithmetic, we get the following result

and the steps are as follows.

1. Divide x3 by x to give x2.

2. Multiply x− 3 by x2.

3. Subtract to get x2 and bring down the next term, 4x.

4. Divide x2 by x to give x.

5. Multiply x− 3 by x.

6. Subtract to get 7x and bring down the next term, −3.

7. Divide 7x by x to give 7.

8. Multiply x− 3 by 7.
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9. Subtract; this gives the remainder 18.

Thus
x3 − 2x2 + 4x− 3

x− 3
= (x2 + x + 7) +

18

x− 3
.

Hence

f (x) = (x2 + x + 7)(x− 3) + 18.

This means that when we divide f (x) by (x − a) the quotient is

Q, and the remainder is R, then

f (x) = Q× (x− a) + R,

where R = f (a). In general, if the polynomial f (x) is divided by

the linear expression px + q, then

f (x) = Q× (px + q) + R,

where R = f (−qp ). This is called the remainder theorem for a

polynomial f (x).

Note that the theorem only applies to polynomials and linear di-

visors.

Example 2.5.1.1 What are the remainders when x3 − x2 +

3x− 2 is divided by

1. x− 1

2. x + 2
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3. 2x− 1?

Example 2.5.1.2 1. The polynomial x3 + ax2 − 3x + 4 is

divided by x−2 and the remainder is 14. What is the value

of a?

2. Let f (x) = x3 +ax2 + bx−3. When f (x) is divided by x−1

and x+ 1, the remainders are 1 and −9 respectively. Find

the values of a and b.

2.5.2 The factor theorem

If (x−a) is a factor of f (x), then there will be no remainder when

f (x) is divided by (x − a). So f (a) = 0. Similarly, if px + q is a

factor of f (x), then f
(
−q
p

)
= 0. This is called the factor theorem

for a polynomial f (x).

Example 2.5.2.1 Determine whether x + 1 is a factor of:

1. f (x) = x2 + 2x + 1.

2. f (x) = x3 − 6x2 − x + 6.

3. f (x) = x3 − 2x2 − x + 2.

Example 2.5.2.2 Given that p(x) = x3 + kx2 +x+ 6, find the

value of k if x+1 is a factor of p. Hence, find the other factors.

Example 2.5.2.3 Factorize x3 − 6x2 − x + 6.
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Solution

As f (x) is of degree 3, it will have atmost three linear factors of

the general form px + a, qx + b and rx + c, so that

x3 − 6x2 − x + 6 = (px + a)(qx + b)(rx + c)

= pqrx3 + · · · + abc

Since the coefficient of x3 is 1 and the last term is +6, we observe

that pqr = 1 and abc = +6. So the possible factors come from the

factors of +6. The first factor has to be found by trial which in this

case is x− 1.

We could continue like this to get the other factors but the best

method is to use long division, considered earlier and show that

x3− 6x2− x+ 6 = (x− 1)(x2− 5x− 6) = (x− 1)(x+ 1)(x− 6).

or use synthetic division stated below.

Given a polynomial

p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0,

we can divide it by a linear factor x−a, where ′a′ is a real number,

using the following steps.

1. Write the a on the left side of a vertical bar and the coefficients

in decreasing degree.

a|an an−1 · · · a1 a0
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2. Pass the coefficient of the highest degree below the horizontal

line as below

a|an an−1 · · · a1 a0

an

3. Multiply the passed coefficient by a and add to the next coef-

ficient

a|an an−1 · · · a1 a0

an aan + an−1

4. Continue step 3 until all coefficients are covered.

5. The numbers below an, an−1, . . . a1 give the coefficients of the

quotient whose degree is 1 less than that of the polynomial.

The number below a0 is the remainder.

Example 2.5.2.4 Solve each of the following:

1. x3 − 6x2 + 8x = 0

2. x3 − 2x2 − x + 2 = 0

Example 2.5.2.5 Sketch each of the following

1. f (x) = x3 − 6x2 + 8x

2. f (x) = x3 − 2x2 − x + 2
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2.5.3 Rational functions; Partial fractions

Definition 2.5.3 A rational function R(x) is the quotient of

two polynomials N(x), D(x) such that R(x) = N(x)
D(x) provided

that D(x) 6= 0.

R(x) is called proper if the degree of N(x) is less than the degree

of D(x). If the degree of N(x) is greater than the degree of D(x),

then R(x) is called improper.

Partial fractions

Express 1
x+2 + 2

x−3 as a single fraction. This gives

1

x + 2
+

2

x− 3
=

3x + 1

(x + 2)(x− 3)
=

3x + 1

x2 − x− 6
.

1
x+2 and 2

x−3 called partial fractions of 3x+1
x2−x−6, and the ability to

represent a complicated algebraic fraction in terms of its partial

fractions is the purpose of this section.

Rules of partial fractions

1. The numerator must be of lower degree than the denominator.

That is, it must be a proper rational function. If it is not, then

we first divide out.

2. Factorize the denominator into its prime factors. These deter-

mine the shapes of the partial fractions.
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The following list summarizes the forms of all the possible partial

fractions.

Denominator containing Expression Form of partial fraction

Linear factors
f (x)

(x + a)(x− b)(x + c)

A

x + a
+

B

x− b
+

C

x + c

Repeated linear factors
f (x)

(x + a)3
A

x + a
+

B

(x + a)2
+

C

(x + a)3

Quadratic factors
f (x)

(ax2 + bx + c)(x + d)

Ax + B

(ax2 + bx + c)
+

C

x + d

Example 2.5.3.1 Split into partial fractions:

1. x
(x+2)(x+3).

2. 11−3x
x2+2x−3.

3. 2x2−9x−35
(x+1)(x−2)(x+3).

Example 2.5.3.2 Split into partial fractions:

1. 2x
(x−2)2(x+2)

.

2. x2+2
(x+2)2(x+3)

.

Example 2.5.3.3 Split into partial fractions:

1. 1
x(x2+5)

.

2. 3+6x+4x2−2x3
x2(x2+3)

.
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Example 2.5.3.4 Split into partial fractions:

1. x4+1
x3+9x

.

2. 6x3+x2+5x−1
x3+x

.

2.6. Inequalities

2.6.1 introduction

Simple inequalities are used to order real numbers. The inequality

symbols <,≤, > and ≥ are used to compare two real numbers

and to denote subsets of real numbers. For example, the simple

inequality x ≥ 3 denotes all real numbers x that are greater than

or equal to 3.

In this section, we will expand our work with inequalities to include

more involved statements such as

5x− 7 > 3x + 9 and − 3 ≤ 6x− 1 < 3.

As is the case with equations, we solve an inequality in the variable

x by finding all values of x for which the inequality is true. Such

values are solutions and are said to satisfy the inequality. The set

of all real numbers that are solutions of an inequality. For example,

the solution set of x + 3 > 4 is

S = {x : x >, x ∈ R}.

]
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2.6.2 Solving linear inequalities

The simplest type of inequality to solve is a linear inequality in x.

For example 2x + 3 > 4 is a linear inequality in x.

As we solve the following examples, remember that when you mul-

tiply and divide by a negative number, you must reverse the in-

equality symbol.

Example 2.6.2.1 Solve each of the following linear inequali-

ties.

1. 5x− 7 > 3x + 9

2. 3x < 2x + 1

3. 1− 3x
2 ≥ x− 4.

4. −3 ≤ 6x− 1 < 3.

2.6.3 Quadratic inequalities

Definition 2.6.1 A quadratic inequality is any inequality that

can be put in one of the forms

1. ax2 + bx + c < 0

2. ax2 + bx + c > 0

3. ax2 + bx + c ≤ 0
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4. ax2 + bx + c ≥ 0

where a, b and c real numbers and a 6= 0.

Procedure for solving Quadratic inequalities

• Express the given inequality in the standard form.

• Solve the equation ax2 + bx + c = 0. The real solutions are

the boundary points.

• Locate these boundary points on a number line, thereby di-

viding the number line into test intervals.

• Choose one representative number within each test interval. If

substituting that value into the original inequality produces a

true statement, then all the real numbers in that test interval

belong to the solution set. Otherwise, no real numbers in the

test interval belong to the solution set.

• Write the solution set; the intervals that produce a true state-

ment.

Example 2.6.3.1 Solve and graph the solution on a number

line.

1. 2x2 − 3x ≥ 2.

2. 5x2 − 9x > 5.
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Example 2.6.3.2 Sketch the graph of −x2 + 2x ≥ −5. Find

the values of x for which −x2 + 2x + 5 ≥ 0.

2.6.4 Polynomial inequalities

Procedure for solving polynomial (cubic) inequalities

• Express the given inequality in the standard form.

• Solve the equation ax3 + bx2 + cx + d = 0. The real solutions

are the boundary points.

• Locate these boundary points on a number line, thereby di-

viding the number line into test intervals.

• Choose one representative number within each test interval. If

substituting that value into the original inequality produces a

true statement, then all the real numbers in that test interval

belong to the solution set. Otherwise, no real numbers in the

test interval belong to the solution set.

• Write the solution set; the intervals that produce a true state-

ment.

Example 2.6.4.1 Solve and graph the solution on a number

line.

1. x3 + x2 ≥ 8x + 12.
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2. x3 + 8 ≤ 5x2 − 2x.

Example 2.6.4.2 Sketch each of the following, and hence state

the set(s) of value of x for which f (x) ≥ 0.

1. f (x) = x3 − 6x2 + 8x

2. f (x) = x3 − 2x2 − x + 2

2.6.5 Rational inequalities

Definition 2.6.2 Asymptote

An asymptote is a line that a graph gets closer and closer to,

but never touches or crosses it.

To solve a rational inequality:

• Get all the terms on the left hand side.

• Combine all the terms into one single rational expression.

• Factor the ration expression so you know the exact location

of the zeroes and vertical asymptotes, and thus where the y-

values change sign.

• State the solution as the interval(s) that have the desired y-

values as demanded by the inequality.

Example 2.6.5.1 Solve the inequalities:
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1. 1
x+5 <

x−2
x−7.

2. x+1
x+3 ≤ 2.

3. x+5
x2−7x+12

≤ 0.

Example 2.6.5.2 In each of the following find/state the do-

main. Hence sketch the graph.

1. f (x) = 1
x.

2. f (x) = 2
x−3.

3. f (x) = x+1
x−1.
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