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1

Sets of numbers

1.1. Integers

We are already familiar with the set of whole numbers

{0, 1, 2, 3, 4, 5, 6, 7, . . .} and the set of natural numbers

{1, 2, 3, 4, 5, 6, 7, 8, . . .} which are written down using the numer-

als. We denote the set of natural numbers and whole numbers

respectively, as N and W,. Thus

N = {1, 2, 3, 4, 5, 6, 7, 8, . . .}

W = {0, 1, 2, 3, 4, 5, 6, 7, 8, . . .}

The whole numbers can be represented by equally spaced points

on a horizontal line where 0 is taken to be the first number.

Whole numbers are ordered. That is they progress from small to

large. On a line, numbers to the left of a given number are less

than (<) the given number, and numbers to the right are greater

(>) than the given number. For example, 8 > 5 while 3 < 5.

If the straight line displaying the natural numbers is extended to
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the left, we get equally spaced points to the left of zero.

These points represent negative numbers which are written as the

natural numbers preceded by a minus sign, for example −4. The

positive and negative natural numbers including 0 make up the set

of integers, denoted by Z. Here, the concept of order still plays

a significant role. For example, −5 < −4 and −2 > −4, this is

because −5 appears to the left of −4 while −2 appears to the right

of −4. Thus

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, 4, · · · }

It is important so far to note that N ⊂W ⊂ Z.

The set of positive integers is denoted by Z+ and note that

Z+ = N = {1, 2, 3, 4, 5, 6, · · · }.

That is, the set of positive integers is just the set of natural num-

bers.

Note that the number zero is neither negative nor positive.
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1.2. Rational numbers

Definition 1.2.1 Rational number are numbers that can be

expressed in the form of a
b , where a and b are integers and

b 6= 0.

We denote by Q the set of rational numbers.

Examples of rational numbers are 1
3,

4
9,
−4
9 ,

200
13 , 57 = 57

1 ,−
78

10096.

Rational numbers are numbers with decimal expansions that are

either:

(a) Terminating (ending in an infinite string of zeroes), for exam-

ple,
3

4
= 0.75000 · · · = 0.75

or

(b) Eventually repeating (ending with a block of digits that re-

peats over and over), for example

23

11
= 2.090909 · · · = 2.09 (the bar indicates the block of repeating digits).

Thus,

1

7
= 0 · 1428571428571428571 · · ·

can be written as
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1

7
= 0 · 142857

and

35

6
= 5 · 83333 · · · = 5 · 83

These properties of rational numbers makes it easier for us to re-

construct a rational number given in a decimal form to its standard

form of
a

b
where a and b are integers with b 6= 0.

Example 1.2.0.1 Show that 0 · 83 is a rational number.

Solution: We need to show that 0 · 83 can be expressed in the

form
a

b
where a and b are integers. Recall that

0 · 83 = 0 · 83333333333 · · ·

Now, let x = 0.83 = 0.83333333333 · · · . Then

10x = 8.33333333 · · · (1.1)

and

100x = 83.3333333 · · · (1.2)
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Note now that the digits after the decimal points in equation (1.1)

and in equation (1.2) are same. If we subtract the two equations

we get a string of zeros after the decimal point. So, subtracting

equation (1.1) from equation (1.2) gives

100x− 10x = 75.000000 · · ·

That is,

90x = 75

Dividing both sides by 90 we get

x =
75

90
=

5

6

But x = 0.83. Thus

0.83 =
5

6

Since we have expressed the 0.83 in standard form of rational num-

bers, we conclude that it is a rational number.

Example 1.2.0.2 Express 3.45 in the form
m

n
where m and n

are integers and n 6= 0.

Solution: Let x = 3.45, then
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x = 3.45 = 3.4545454545 · · · . (1.3)

Since the repeating block comes immediately after the decimal

point, our next multiplication should move the whole one block of

repeating decimals to the left of the decimal point. Thus, multi-

plying equation (1.3) by 100 we get

100x = 345.45 = 345.4545454545 · · · (1.4)

Subtract equation (1.3) from equation (1.4) to get

100x− x = 342.0000000 · · ·

Thus

99x = 342

Divide by 99 both sides to get

x =
342

99
=

38

11

Thus

3.45 =
38

11
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The reconstruction is even easier if the decimal expansion is ter-

minating.

Example 1.2.0.3 Show that 2.75 is a rational number.

Solution: Let x = 2.75. Note here that since the decimal expan-

sion is terminating, there is no need for subtraction. An appropri-

ate multiplication by a power of 10 will leave only the zeros after

the decimal point. Since there are 2 decimal places, we multiply x

by 100. This gives

100x = 275.

Divide both sides by 100

x =
275

100
=

11

4
.

Note the following inclusions

N ⊂W ⊂ Z ⊂ Q

Exercise

Express each of the following in the form
a

b
where a and b are

integers and b 6= 0.
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(i) 1.25

(ii) 0.3

(iii) 0.359.

(iv) −2.13

1.3. Irrational numbers

An irrational number is a number which cannot be expressed in

the form
a

b
for some integers a and b. The decimal representation

of an irrational number is non terminating and non repeating. The

set of irrational numbers will be denoted by Irr.

Some examples of irrational numbers are

π,
√

2,
3
√

5, e and log10 3.

where
π ≈ 3.141592654 · · ·
e ≈ 2.718281828 · · ·

We shall now prove that
√

2 is not a rational number by showing

that it cannot be expressed in the form
a

b
for some integers a and

b 6= 0. But before we do that, we shall first show that if p ∈ Z is

an integer such that p2 is divisible by 2, then p itself is divisible by

2.
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Proof. Suppose p ∈ Z is an integer such that p2 is divisible by

2. Now, every integer is either divisible by 2 or leaves a remainder

of 1 when divided by 2. Therefore, every integer can be written in

one of the following:

p =

{
2n

2n + 1

where n is an integer. Then

p2 =

4n2

4n2 + 4n + 1

where n ∈ Z.

But since p2 is divisible by 2, it must be of the form

p2 = 4n2.

This then gives p to be of the form

p = 2n, n ∈ Z.

so that p is divisible by 2.

We shall now prove that
√

2 is not a rational number. We shall

prove this by contradiction.
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To prove a mathematical statement by contradiction, you first as-

sume something about the statement (usually what it is not). Then

work through the statement according to the assumption. If you

come up with a conclusion which is not consistent with the as-

sumption, that is, the conclusion which contradicts your earlier as-

sumption, then your earlier assumption about the statement must

be false.

Example 1.3.0.4 Prove that
√

2 is an irrational number.

Proof. Assume that
√

2 is a rational number. Then there are

integers a and b 6= 0 with no common factor and such that a > 0

and b > 0 such that

√
2 =

a

b
.

Squaring both sides yields

2 =
a2

b2
,

so that a2 = 2b2. But now a2 has a factor 2 which means that a2

is even. Then a itself is also even by the above proof.Thus a has a

factor 2. Thus, we can write a in the form
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a = 2p, p ∈ Z.

From a2 = 2b2 and

a = 2p,

we get

2b2 = 4p2,

so that

b2 = 2p2.

Thus b2 is even. Again we get that b is also even. This means that

both a and b have a common factor 2. But now this contradicts

our earlier assumption that a and b have no common factor. This

contradiction implies that our earlier statement about
√

2 is false.

That is, we cannot find integers a and b 6= 0 so that
√

2 = a
b in its

lowest terms. Hence,

√
2 6= a

b
.

Therefore it is irrational.

We remark that the set of rational numbers and the set of irrational

numbers are two disjoint sets. That is, there is no number which
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is both rational and irrational at the same time. Thus

Q ∩ Irr = ∅.

Example 1.3.0.5 Given that x and y are integers, and that
√

3 is an irrational number, prove that x+y
√

3 is an irrational

number.

Proof. It is easier to prove such statement by contradiction. So,

we assume that x+ y
√

3 is rational and aim for the contradiction.

Then there are integers a and b 6= 0 such that

x + y
√

3 =
a

b
.

Solving for
√

3 gives the following

y
√

3 =
a

b
− x

so that

y
√

3 =
a− bx
b

and

√
3 =

a− bx
by

. (1.5)
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Now the left hand side of equation (1.5) is irrational while the right

hand side is a rational number since both the numerator and the

denominator are integers. But there is no number which is both

rational and irrational. Thus equation (1.5) is a contradiction.

Therefore, there are no integers a and b such that x + y
√

3 = a
b .

This contradiction implies that x+ y
√

3 is not rational and hence

it is an irrational number.

Note by taking x = 5 and y = −2 in the above example we can

show that 5− 2
√

3 is an irrational number. Just follow the above

steps for the proof.

1.4. Real numbers

The union of the set of rational numbers with the set of irrational

numbers is the set of real numbers which we denote by the symbol

R. That is,

Q ∪ Irr = R.

The set of real numbers is uncountable. As a result, we can repre-

sent the set of real numbers in one of the following ways:

(i) Interval notation. We use brackets (, ), [, ) or [, ] to give the

subset of the set of real numbers. For example, (−5, 9]. This is

the set of all numbers rationals or irrationals between -5 and 9.
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Open brackets indicate that the boundary number is not part

of the set while the closed bracket indicates that the boundary

number is a member of the set. Note that we do not use braces

on a subset of the set of real numbers unless it is a subset of

integers.

(ii) Set builder notation. We can use set builder notation to

describe a subset of the set of real numbers. For example,

{x ∈ R : −5 < x ≤ 9}. This is the same set as one given

above. Sometimes we omit R and just write {x : −5 < x ≤ 9}
if it is clear that the universal set is the set of real numbers.

(iii) We can also use a number line to display the subset of the set

of real numbers. For example,

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

Note that the small circle at−5 means that the boundary num-

ber −5 is not included in the set, and the small black circle at

9 means that the boundary number 9 is included in the set.

In most cases, instead of drawing the required subset of R on the

number line itself we draw it slightly above the number line for

clarity. For example, the set (−5, 9] would be shown as follows:

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

In general, the interval notations are:
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(i) (a, b) represents all the real numbers between a and b, not

including a and b. This is an open interval. In set builder

notation, we write {x : a < x < b}. For example, the graph

of (−4, 2) is

−5 −4 −3 −2 −1 0 1 2 3 4 5

(ii) [a, b] represents all the real numbers between a and b, including

a and b. This is a closed interval. In set builder notation, we

write {x : a ≤ x ≤ b}. For example, the graph of [−4, 2] is

−5 −4 −3 −2 −1 0 1 2 3 4 5

(iii) (a, b] represents all the real numbers between a and b, not

including a but including b. This is a half open interval. In set

builder notation, we write {x : a < x ≤ b}. For example, the

graph of (−4, 2] is

−5 −4 −3 −2 −1 0 1 2 3 4 5

(iv) [a, b) represents all the real numbers between a and b, includ-

ing a but not b. This is a half open interval. In set builder

notation, we write {x : a ≤ x < b}. For example, the graph

of [−4, 2) is

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Subsets of the real numbers whose graphs extend forever in the one

or both directions can be represented by interval notation using the

infinity symbol ∞ or the negative infinity symbol −∞.

Note that infinity (∞) is not a real number. Therefore, wherever

this symbol appears you must put an open bracket because it does

not belong to the set. The following are the examples of sets which

involve infinity (∞) symbol.

(a) (−∞, a). In set builder notation is given by {x : x < a}. For

example, the set (−∞, 2) can be displayed on a number line

as follows:

−3 −2 −1 0 1 2 3

(b) [b,∞). In set builder notation it is given by {x : b ≤ x}. For

example, the set [−2,∞) can be shown on a number line as

follows:

−3 −2 −1 0 1 2 3

Example 1.4.0.6 Let A = {x : −7 ≤ x < 3} and B =

[−1,∞). Find the following sets and display them on a number

line.

(i) A ∩B

17



(ii) A′

Solution:

(i) We first display the two sets on a number line so that we can

determine the solutions. We have set A given by the number

line

A

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

While that of B is given by

B

−3 −2 −1 0 1 2 3

Combining the two diagrams we get

A
B

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

Clearly the two sets have their intersection from -1 to +3 be-

cause that is where both graphs appear. While -1 is in the

intersection since it is in both sets, +3 is not in the intersec-

tion because it is not an element of A. Therefore,

A ∩B = [−1, 3).

The display on the number line is
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A ∩B

−4 −3 −2 −1 0 1 2 3 4

(ii) It is again necessary to draw the number line because we shall

see clearly the required solution set.

A

A′A′

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

From the diagram, the set A′ is represented by the union of

the sets represented by the two arrows. Thus

A′ = (−∞,−7) ∪ [3,∞).

The number line is given by

A′A′

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

Definition 1.4.1 Absolute value of a number

The absolute value of the real number a, denoted by |a|, is

defined by

|a| =

a if a ≥ 0

−a if a < 0
.
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For example |7| = 7 and | − 7| = −(−7) = 7

Thus, the absolute value of a real number is always positive.

Example 1.4.0.7 Calculate the value of |a− b| in each of the

following cases.

(i) a = 7, b = 4

(ii) a = −6, b = 8

(iii) a = 2, b = 11

Solution:

(i) |7− 4| = |3| = 3

(ii) | − 6− 8| = | − 14| = −(−14) = 14

(iii) |2− 11| = | − 9| = −(−9) = 9.

We shall now use the properties of absolute value of a real number

to solve equations. As you will see, using the definition of abso-

lute value can sometimes simplify calculations of equations that

may otherwise result in quadratic equations. This is because such

calculations are reduced to dealing with linear equations instead.

Example 1.4.0.8 Solve the equation |2x− 3| = 5.
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Solution: Using the definition of absolute value we see that there

are two possibilities we need to consider. Either 2x− 3 is positive

or it is negative.

Case 1. 2x− 3 is positive.

If 2x − 3 > 0 then |2x − 3| = 2x − 3. In this case we then have

2x− 3 = 5. Solving this equation gives x = 4.

Case 2. 2x− 3 is negative.

If 2x−3 < 0 then |2x−3| = −(2x−3).Then we have−(2x−3) = 5

or 2x− 3 = −5. Solving this equation yields x = −1.

Combining the two solutions we get x = 4 or x = −1.

Let k be a positive real number. Consider the inequality

|x| ≤ k

If x is positive, then |x| ≤ k implies that x ≤ k. On the other

hand, if x is negative, then |x| ≤ k implies that −x ≤ k, or

x ≥ −k. Combining the two inequalities we have

|x| ≤ k implies that − k ≤ x ≤ k.

Example 1.4.0.9 Solve the inequality |2x− 3| ≤ 5.

Solution: From the above discussion we have
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|2x− 3| ≤ 5 implies that − 5 ≤ 2x− 3 ≤ 5.

Solving each of the two inequalities separately we get

−1 ≤ x ≤ 4.

Remark 1.4.1 Note that if x and y are real numbers, then

|x
y
| = |x|
|y|
.

Example 1.4.0.10 Given that a < b and that
|p− a|
|b− a|

=
3

4
,

express p in terms of a and b if p < a.

Solution: Since a < b, we have b−a > 0 so that |b−a| = b−a.
Thus,

|p− a|
|b− a|

=
|p− a|
b− a

=
3

4
.

Since b − a 6= 0, we cross multiply to get |p − a| = 3
4(b − a).

But p − a < 0, so we have |p − a| = −(p − a) =
3b

4
− 3a

4
, or

−p + a =
3b

4
− 3a

4
. Solving for p we get p =

7a

4
− 3b

4
.
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1.5. Complex numbers

A complex number is an expression of the form a+ib, where a and b

are real numbers and i2 = −1. For convenience, we shall mainly use

the letter z to represent a complex number. For example z = 4+5i.

The set of all such numbers is called the set of complex numbers

and is denoted by C.

Remark 1.5.1 Note that when a letter is used for the imag-

inary part we put i before the letter, e.g ib. However, when

a number is written for the imaginary part we write i after

the number, e.g 7i. This is just a matter of preference as the

position of i be placed before or after in any of the situations

without causing confusion.

If z = a + ib ∈ C, then we call a the real part of z and b the

imaginary part of z. We write this as Re(z) = a and Im(z) = b.

Note that the imaginary part of the complex number z = a + ib

is just the real number b without the i. The representation of a

complex number in the form a+ ib is called the Cartesian form of

the complex number. If b = 0, z = a, and in this case z is said

to be purely real. Similarly, if a = 0 then z = ib and z is said to

be purely imaginary. From these comments we see that the set of

real numbers is a subset of the set of complex numbers. That is,

R ⊂ C
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Example 1.5.0.11 Let z = −3− 4i. State Re(z) and Im(z).

Solution: We have Re(z) = −3 and Im(z) = −4.

1.5.1 Equal complex numbers

Definition 1.5.1 Let z1 = x1 + iy1 and z2 = x2 + iy2 be two

complex numbers. Then z1 = z2 if and only if x1 = x2 and

y1 = y2. That is, two complex numbers are equal if and only if

their real parts are equal and their imaginary parts are equal.

Example 1.5.1.1 (i) Find the value of x and the value of y

given that x + iy = 5 + 4i.

(ii) Find the value of a and b if (a + b) + i(a− b) = 7− 3i.

Solution:

(i) Equating the real parts and the imaginary parts we have x = 5

and y = 4.

(ii) Again equating the real parts and the imaginary parts gives

the simultaneous equations

a + b = 7

a− b = −3

Solving the system of equations yields a = 2 and b = 5.
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1.5.2 Addition and subtraction of complex numbers

Let z = a + ib and w = u + iv be two complex numbers. Then,

the sum z + w is given by

z + w = (a + ib) + (u + iv)

= (a + u) + ib + iv

= (a + u) + (b + v)i.

Example 1.5.2.1 Find the sum z + w if z = 4 + 5i and w =

3− 2i.

Solution: Adding the real parts and the imaginary parts we have

z + w = (4 + 3) + (5− 2)i

= 7 + 3i.

Example 1.5.2.2 Find x and y such that (3x−iy)+(2+13i) =

−7 + 3i.

Solution: We first add the real parts and the imaginary parts on

the left and we get

(3x + 2) + i(13− y) = −7 + 3i.

Equating the real parts and the imaginary parts we get
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3x + 2 = −7

13− y = 3

Solving the two equations we get

x = −3 and y = 10.

Similarly, if z = a+ ib and w = u+ iv, then we define subtraction

z − w by

z − w = (a + ib)− (u + iv)

= (a− u) + i(b− v).

Example 1.5.2.3 Find z − w if z = 4 + 5i and w = 3− 2i.

Solution: We have

z − w = (4− 3) + (5− (−2))i

= 7 + 7i.

1.5.3 Multiplication of complex numbers

Let z = a + ib and w = u + iv be two complex numbers. We

define the multiplication of z and w by

zw = (a + ib)(u + iv)

= au + iav + ibu + i2bv

= au + i(av + bu)− bv
= au− bv + i(av + bu).

26



We see that Re(zw) = au− bv and Im(zw) = av + bu.

Example 1.5.3.1 Given that z = 3 − 4i and w = 2 + 5i.

Compute zw.

Solution: We have

zw = (3− 4i)(2 + 5i)

= 6 + 15i− 8i− 20(i2)

= 6 + 20 + (15− 8)i

= 26 + 7i.

If the expression contains more that two factors, we multiply the

factors together in stages.

Example 1.5.3.2 Multiply (3 + 4i)(5− 8i)(1− 2i).

Solution: Starting with the first two factors and then multiplying

the result with the third factor we have the following

(3 + 4i)(5− 8i)(1− 2i) = (15 + 32 + (−24 + 20)i)(1− 2i)

= (47− 4i)(1− 2i)

= 47− 8 + (−94− 4)i

= 39− 98i.

From the previous example, we observed that i3 = −i, because

i2 = −1. Continuing, we see that i4 = i2 × i2 = −1 × −1 = 1,

i5 = i and i6 = −1.
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In summary, to calculate any high power of i, you can convert it to

a lower power by taking the closest multiple of 4 that is no longer

bigger than the exponent and subtract this from the exponent. For

example, i99 = i(96+3) = i3 = −i.

Example 1.5.3.3 Simplify each of the following:

1. i17

2. i120

3. i64002

1.5.4 Conjugate complex numbers

Definition 1.5.2 Let z = x + iy be a complex number. Then

the conjugate of z is denoted by z and it is defined by

z = x− iy.

Note that we only change the sign of the imaginary part.

For example, the conjugate of 4 − 7i is 4 + 7i, and the conjugate

of −9 + 13i is −9− 13i.

Remark 1.5.2 If z = x + iy is a complex number, then the

product zz is a real number given by
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zz = (x + iy)(x− iy) = x2 + y2.

For example, compute (5 + 8i)(5− 8i).

Solution:

(5 + 8i)(5− 8i) = 25− 40i + 40i + 64

= 25 + 64

= 89

Remark 1.5.3 If z = x+iy is a complex number, then z+z =

2Re(z) and z − z = 2Im(z).

Example 1.5.4.1 Given that z = 5 + 4i compute

(i) z − z̄

(ii) z + z̄

(iii) zz̄.

1.5.5 Modulus of a complex number

Definition 1.5.3 Let z = x+ iy be a complex number. Then,

the modulus of z is denoted by |z| and it is defined by

|z| =
√
x2 + y2.

Note that |z|2 = x2 + y2 = zz.
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Example 1.5.5.1 Calculate the modulus of each of the follow-

ing complex numbers.

(i) 5− 12i

(ii) −7− 5i

(iii) 15i

Solution:

(i) |5− 12i| =
√

52 + (−12)2 =
√

25 + 144 =
√

169 = 13.

(ii) | − 7− 5i| =
√

(−7)2 + (−5)2 =
√

49 + 25 =
√

74.

(iii) |15i| =
√

02 + 152 =
√

225 = 15.

1.5.6 Division of complex numbers

Dividing a complex number by a real number is easily done by

the basic processes of algebra. For example, if z = 9 − 12i, then
z
3 = 9−12i

3 = 3(3−4i)
3 = 3 − 4i. Similarly, 7+2i

5 = 7
5 + 2

5i. However,

to deal with a situation where the denominator is also a complex

number such as 7−4i
4+3i, we must find other means to do it.

The rule with regard to dividing two complex numbers is that you

multiply both the numerator and the denominator by the conjugate

of the denominator. This transforms the denominator into a real

number. The simplification can then be done as above. Thus, if z

and w are two complex numbers, then the division z
w is given by
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z

w
=
zw

ww
.

Example 1.5.6.1 Let z = 7 − 5i and w = −3 + 2i be two

complex numbers. Find z
w .

Solution:

z
w = 7−5i

−3+2i

= (7−5i)(−3−2i)
(−3+2i)(−3−2i)

= −21−14i+15i−10
(−3)2+(2)2

= −31+i
13

= −31
13 + 1

13i.

Example 1.5.6.2 Simplify each of the following:

(a)
3 + 2i

1− 3i

(b)
1 + i

3− 2i
+ 2 + 4i

Solution:

(a) 3+2i
1−3i = (3+2i)(1+3i)

(12+(−3)2) = 9−7i
10 = 9

10 −
7
10i
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(b)
1+i
3−2i + 2 + 4i = (1+i)(3+2i)

9+4 + (2 + 4i)

= 1+5i
13 + (2 + 4i)

= 1
13 + 5

13i + 2 + 4i

= ( 1
13 + 2) + ( 5

13 + 4)i

= 27
13 + 57

13i.
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